a scientist is trying to determine how much poison will kill a rat the fastest which of the following statements is an example of an appropriate hypot
Logo

Nursing Elites

ATI TEAS 7

TEAS Math Practice Test

1. A scientist is trying to determine how much poison will kill a rat the fastest. Which of the following statements is an example of an appropriate hypothesis?

Correct answer: C

Rationale: A valid hypothesis must be a testable statement that predicts a relationship between variables. Option C is the only statement that presents a clear cause-and-effect relationship between the amount of poison given and the time it takes for the rat to die. Option A is descriptive without predicting an outcome, option B is a question rather than a statement, and option D is a general fact about poison and rats, lacking a specific hypothesis for testing.

2. Find the area in square centimeters of a circle with a diameter of 16 centimeters. Use 3.14 for π.

Correct answer: D

Rationale: The formula for the area of a circle is: Area = π x (radius²). Given: Diameter = 16 cm, so Radius = Diameter / 2 = 16 / 2 = 8 cm. Now, calculate the area using π = 3.14: Area = 3.14 x (8²) = 3.14 x 64 = 200.96 cm². The correct answer is D (200.96 cm²) as it correctly calculates the area of the circle. Choices A, B, and C are incorrect as they do not represent the accurate area of the circle based on the given diameter and π value.

3. Solve the equation 3(2x+5)=11x+5 for x. Which of the following is correct?

Correct answer: B

Rationale: To solve the equation, distribute 3 to both terms inside the parentheses: 6x + 15 = 11x + 5. Then, move 11x to the left side by subtracting it from both sides: 6x - 11x = 5 - 15. Simplify to get -5x = -10. Divide by -5 to isolate x: x = 2. Therefore, the correct answer is x = 2. Choices A, C, and D are incorrect because they do not match the correct solution obtained by solving the equation step by step.

4. Robert plans to drive 1,800 miles. His car gets 30 miles per gallon, and his tank holds 12 gallons. How many tanks of gas will he need for the trip?

Correct answer: B

Rationale: To calculate how many gallons of gas Robert needs for the 1,800-mile trip, divide the total distance by the car's mileage per gallon: 1,800 miles ÷ 30 mpg = 60 gallons. Since his tank holds 12 gallons, Robert will need 60 gallons ÷ 12 gallons per tank = 5 tanks of gas for the trip. Choice A (4 tanks), Choice C (6 tanks), and Choice D (7 tanks) are incorrect as they do not correctly calculate the number of tanks needed based on the car's mileage and tank capacity.

5. Solve the following equation: 3(2y+50)−4y=500

Correct answer: B

Rationale: To solve the equation 3(2y+50)−4y=500, first distribute to get 6y+150−4y=500. Combining like terms results in 2𝑦 + 150 = 500. By subtracting 150 from both sides, we get 2y = 350. Dividing by 2 gives y = 175. Therefore, the correct answer is B. Choices A, C, and D are incorrect because they do not correctly follow the steps of distributing, combining like terms, and isolating the variable to solve for y.

Similar Questions

A commuter survey counts the people riding in cars on a highway in the morning. Each car contains only one man, only one woman, or both one man and one woman. Out of 25 cars, 13 contain a woman and 20 contain a man. How many contain both a man and a woman?
How will the number 847.89632 be written if rounded to the nearest hundredth?
Jessica buys 10 cans of paint. Red paint costs $1 per can, and blue paint costs $2 per can. In total, she spends $16. How many red cans did she buy?
Solve the inequality for the unknown.
University Q has an extremely competitive nursing program. Historically, 3/4 of the students in each incoming class major in nursing, but only 1/3 of those who major in nursing actually complete the program. If this year’s incoming class has 100 students, how many students will complete the nursing program?

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses