a scientist is trying to determine how much poison will kill a rat the fastest which of the following statements is an example of an appropriate hypot
Logo

Nursing Elites

ATI TEAS 7

TEAS Math Practice Test

1. A scientist is trying to determine how much poison will kill a rat the fastest. Which of the following statements is an example of an appropriate hypothesis?

Correct answer: C

Rationale: A valid hypothesis must be a testable statement that predicts a relationship between variables. Option C is the only statement that presents a clear cause-and-effect relationship between the amount of poison given and the time it takes for the rat to die. Option A is descriptive without predicting an outcome, option B is a question rather than a statement, and option D is a general fact about poison and rats, lacking a specific hypothesis for testing.

2. What is the result of multiplying (3/5) by (5/8)?

Correct answer: A

Rationale: To multiply fractions, multiply the numerators together and the denominators together. For (3/5) * (5/8), you get (3*5) / (5*8) = 15 / 40, which simplifies to 3/8. Therefore, the correct answer is A. Choice B (3/5) is incorrect as it is one of the original fractions being multiplied. Choice C (15/40) is the result of the multiplication but not simplified to its lowest terms. Choice D (3/30) is incorrect as the numerator is not the result of multiplying 3 and 5 together.

3. A set of patients is divided into groups: 1/2 in Group Alpha, 1/3 in Group Beta, and 1/6 in Group Gamma. Order the groups from smallest to largest.

Correct answer: C

Rationale: To determine the order from smallest to largest groups, we look at the fractions representing the groups. Group Gamma has 1/6, which is the smallest fraction, followed by Group Alpha with 1/2, and Group Beta with 1/3 being the largest fraction. So, the correct order is Gamma, Alpha, Beta. Choice A is incorrect because it lists Alpha, Beta, Gamma, which is the reverse order. Choice B is incorrect as it lists Alpha, Gamma, Beta, which is also incorrect. Choice D is incorrect as it lists Gamma, Beta, Alpha, which is not the correct order based on the fractions provided.

4. Can a rational number be a fraction or decimal, or must it be a whole number?

Correct answer: C

Rationale: The correct answer is C. A rational number can be a whole number, fraction, or decimal. A rational number is any number that can be expressed as a ratio of two integers (where the denominator is not zero), which includes whole numbers, fractions, and decimals. Choice A is incorrect because rational numbers are not limited to being whole numbers. Choice B is incorrect because a rational number can be a fraction, decimal, or whole number. Choice D is incorrect because rational numbers can definitely be decimals, as long as the decimal representation is either terminating or repeating.

5. What is the result of the expression 102 – 7(3 – 4) – 25? Which of the following is correct?

Correct answer: D

Rationale: To simplify the expression, we follow the order of operations (PEMDAS): Parentheses, Exponents, Multiplication and Division (from left to right), Addition and Subtraction (from left to right). First, solve inside the parentheses: 3 - 4 = -1. Then, multiply -1 by 7: -1 * 7 = -7. Now, substitute these values back into the expression: 102 - (-7) - 25 = 102 + 7 - 25 = 109 - 25 = 84. Therefore, the correct answer is 84. Choices A, B, and C are incorrect as they do not represent the correct simplification of the given expression.

Similar Questions

Simplify the expression: 2x + 3x - 5.
How many feet are in 9 yards?
What defines rational and irrational numbers?
What is 1.25 as a fraction?
As the number of credit hours a student takes in a semester increases, the amount of tuition, the amount of access fees, and the number of student loans available also increase. Which of the following is the independent variable?

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses