ATI TEAS 7
TEAS Math Practice Test
1. A scientist is trying to determine how much poison will kill a rat the fastest. Which of the following statements is an example of an appropriate hypothesis?
- A. Rats that are given lots of poison seem to die quickly.
- B. Does the amount of poison affect how quickly the rat dies?
- C. The more poison a rat is given, the quicker it will die.
- D. Poison is fatal to rats.
Correct answer: C
Rationale: A valid hypothesis must be a testable statement that predicts a relationship between variables. Option C is the only statement that presents a clear cause-and-effect relationship between the amount of poison given and the time it takes for the rat to die. Option A is descriptive without predicting an outcome, option B is a question rather than a statement, and option D is a general fact about poison and rats, lacking a specific hypothesis for testing.
2. If a car travels 150 miles in 3 hours, what is the car's average speed in miles per hour?
- A. 45 mph
- B. 50 mph
- C. 55 mph
- D. 60 mph
Correct answer: B
Rationale: To calculate the average speed, use the formula: Average speed = Total distance / Total time. In this case, Average speed = 150 miles / 3 hours = 50 mph. Therefore, the car's average speed is 50 miles per hour. Choice A (45 mph), Choice C (55 mph), and Choice D (60 mph) are incorrect as they do not match the correct calculation based on the given distance and time values.
3. What are all the factors of 12?
- A. 12, 24, 36
- B. 1, 2, 4, 6, 12
- C. 12, 24, 36, 48
- D. 1, 2, 3, 4, 6, 12
Correct answer: D
Rationale: The factors of 12 are numbers that divide evenly into 12 without leaving a remainder. The correct factors of 12 are 1, 2, 3, 4, 6, and 12. Choice A (12, 24, 36) is incorrect as only 12 is a factor of 12. Choice B (1, 2, 4, 6, 12) includes all the correct factors of 12. Choice C (12, 24, 36, 48) is incorrect as 24, 36, and 48 are not factors of 12.
4. Which of the following statements is true?
- A. The mean is less than the median
- B. The mode is greater than the median
- C. The mode is less than the mean, median, and range
- D. The mode is equal to the range
Correct answer: A
Rationale: The mean is the average of a set of numbers, while the median is the middle value when the numbers are arranged in order. If a set of numbers is skewed to one side with some outliers, the mean can be influenced by these extreme values, causing it to be greater or less than the median. In cases of skewed distribution, the mean typically shifts towards the direction of the outliers, making it less than the median. Choice B is incorrect because the mode, which is the most frequent number in a dataset, may or may not be greater than the median. Choice C is incorrect because the mode can be greater than the mean or median, depending on the data. Choice D is incorrect because the mode, representing the most frequent value, has no direct relationship with the range, which is the difference between the highest and lowest values in a dataset.
5. Simplify (x^2 - y^2) / (x - y)
- A. x + y
- B. x - y
- C. 1
- D. (x + y)/(x - y)
Correct answer: A
Rationale: The expression ๐ฅ^2 - ๐ฆ^2 is a difference of squares, which follows the identity: ๐ฅ^2 - ๐ฆ^2 = (๐ฅ + ๐ฆ)(๐ฅ - ๐ฆ). Therefore, the given expression becomes: (๐ฅ^2 - ๐ฆ^2) / (๐ฅ - ๐ฆ) = (๐ฅ + ๐ฆ)(๐ฅ - ๐ฆ) / (๐ฅ - ๐ฆ). Since (๐ฅ - ๐ฆ) appears in both the numerator and the denominator, they cancel each other out, leaving ๐ฅ + ๐ฆ. Thus, the simplified form of (๐ฅ^2 - ๐ฆ^2) / (๐ฅ - ๐ฆ) is ๐ฅ + ๐ฆ. Therefore, the correct answer is A (x + y). Option B (x - y) is incorrect as it does not result from simplifying the given expression. Option C (1) is incorrect as it does not account for the variables x and y present in the expression. Option D ((x + y)/(x - y)) is incorrect as it presents the simplified form in a different format than the correct answer.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$49/ 30 days
- 3,000 Questions with answers
- 30 days access