ATI TEAS 7
TEAS 7 Math Practice Test
1. During January, Dr. Lewis worked 20 shifts. During February, she worked three times as many shifts as she did during January. During March, she worked half the number of shifts she worked during February. Which equation below describes the number of shifts Dr. Lewis worked in March?
- A. shifts = 20 + 3 + 1/2
- B. shifts = (20)(3)(1/2)
- C. shifts = (20)(3) + 1/2
- D. shifts = 20 + (3)(1/2)
Correct answer: B
Rationale: During January, Dr. Lewis worked 20 shifts. Shifts for January = 20. During February, she worked three times as many shifts as she did during January. Shifts for February = (20)(3) = 60. During March, she worked half the number of shifts she worked in February. Shifts for March = (60)(1/2) = 30. Therefore, the correct equation to describe the number of shifts Dr. Lewis worked in March is 'shifts = (20)(3)(1/2)', representing the calculation based on the given scenario. Choices A, C, and D do not accurately represent the correct mathematical relationship between the shifts worked in the different months, making them incorrect.
2. Divide 4/3 by 9/13 and reduce the fraction.
- A. 52/27
- B. 51/27
- C. 52/29
- D. 51/29
Correct answer: A
Rationale: To divide fractions, you multiply the first fraction by the reciprocal of the second fraction. So, (4/3) รท (9/13) = (4/3) * (13/9) = 52/27. This fraction is already in its reduced form, making choice A the correct answer. Choices B, C, and D are incorrect as they do not represent the correct result of dividing the fractions 4/3 by 9/13.
3. What is the probability of consecutively pulling two more orange blocks, without replacement, from a bag containing 3 orange blocks, 5 green blocks, and 4 purple blocks?
- A. 3/12
- B. 3/55
- C. 2/10
- D. 1/3
Correct answer: B
Rationale: To calculate the probability of consecutively pulling two more orange blocks without replacement, we first determine the probability of pulling an orange block on the first draw, which is 3/12 (3 orange blocks out of 12 total blocks). After removing one orange block, there are only 11 blocks left, so the probability of pulling another orange block on the second draw is 2/11. To find the combined probability, we multiply the probabilities together: (3/12) * (2/11) = 6/132 = 3/55. Therefore, the correct answer is B. Choice A (3/12) incorrectly simplifies the probability before calculating the second draw. Choice C (2/10) does not consider the specific number of orange blocks in the bag. Choice D (1/3) does not account for the reduced number of blocks after the first draw.
4. Gordon purchased a television that was 30% off its original price of $472. What was the sale price?
- A. 141.60
- B. 225.70
- C. 305.30
- D. 330.40
Correct answer: D
Rationale: To find the sale price after a 30% discount, you first calculate the discount amount which is 30% of $472. 30% of $472 is $141.60. To find the sale price, you subtract the discount amount from the original price: $472 - $141.60 = $330.40. Therefore, the sale price of the television after a 30% discount would be $330.40. Choices A, B, and C are incorrect as they do not accurately reflect the calculated sale price after the discount.
5. If x represents the width of a rectangle and the length is six less than two times the width, which of the following expressions represents the length of the rectangle in terms of x?
- A. 2x-6
- B. 6-2x
- C. 6x-2
- D. 3x-4
Correct answer: A
Rationale: To find the expression representing the length of the rectangle in terms of x, we need to consider that the length is six less than two times the width. If we denote the width as x, the length can be expressed as 2x - 6. Therefore, the correct expression is 2x-6 (choice A). Choice B, 6-2x, represents the width subtracted from 6, not the length. Choice C, 6x-2, is not derived from the given information about the relationship between the width and length. Choice D, 3x-4, is not consistent with the relationship provided in the question.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access