which of the following statements demonstrates a negative correlation between two variables
Logo

Nursing Elites

ATI TEAS 7

TEAS Practice Test Math

1. Which of the following statements demonstrates a negative correlation between two variables?

Correct answer: C

Rationale: The correct answer is C. This statement demonstrates a negative correlation between two variables as it indicates that as tennis balls age, their bounce tends to decrease. In a negative correlation, as one variable increases, the other tends to decrease. Choices A, B, and D do not illustrate a negative correlation. Choice A describes a positive correlation, as playing baseball more is associated with having more hits. Choice B does not show a correlation but a general observation. Choice D also does not demonstrate a correlation; it simply states that older cars tend to have higher mileage, without implying a relationship between age and mileage.

2. Simplify the following expression: 0.0178 × 2.401

Correct answer: B

Rationale: To simplify the expression 0.0178 × 2.401, you multiply the two numbers to get the result. Therefore, 0.0178 × 2.401 = 0.0427378. Choice A (2.0358414), Choice C (0.2341695), and Choice D (0.348324) are incorrect as they do not represent the correct result of the multiplication operation.

3. x ÷ 7 = x − 36. Solve the equation. Which of the following is correct?

Correct answer: B

Rationale: To solve the equation x ÷ 7 = x − 36, start by multiplying both sides by 7 to get 7(x ÷ 7) = 7(x − 36), which simplifies to x = 7x − 252. Next, subtract 7x from both sides to get -6x = -252. Finally, divide both sides by -6 to solve for x, which results in x = 42. Therefore, the correct answer is x = 42. Choice A (x = 6), Choice C (x = 4), and Choice D (x = 252) are incorrect as they do not align with the correct solution derived from the equation.

4. What is the surface area of the cylinder shown below?

Correct answer: D

Rationale: The surface area of a cylinder can be calculated using the formula: S = 2πr² + 2πrh, where r is the radius and h is the height. Substituting the values for radius (12) and height (8) into the formula: S = 2π(12)² + 2π(12)(8). S = 2π(144) + 2π(96). S = 288π + 192π. S = 480π ≈ 1507.964. Therefore, the surface area of the cylinder is approximately 1507.2 square centimeters. Choice A, 602.9 cm², is incorrect as it is significantly lower than the correct value. Choice B, 904.3 cm², is also incorrect as it does not match the calculated surface area. Choice C, 1,408.7 cm², is incorrect as it does not align with the calculated value of the surface area.

5. How many centimeters in an inch? How many inches in a centimeter?

Correct answer: A

Rationale: The correct conversion is: 1 inch = 2.54 centimeters and 1 centimeter = 0.393 inches. Therefore, option A is correct. Option B is incorrect as the conversion is incorrect. Option C is incorrect as it does not match the correct conversion values. Option D is incorrect as the conversion values provided are inaccurate.

Similar Questions

What is the GCF (greatest common factor)?
Which of the following weights is equivalent to 3.193 kilograms?
Dr. Lee observed that 30% of all his patients developed an infection after taking a certain antibiotic. He further noticed that 5% of that 30% required hospitalization to recover from the infection. What percentage of Dr. Lee's patients were hospitalized after taking the antibiotic?
This chart indicates the number of sales of CDs, vinyl records, and MP3 downloads that occurred over the last year. Approximately what percentage of the total sales was from CDs?
To rent tablecloths from a rental vendor, there is an initial charge of $40. There is an additional charge of $5 per circular tablecloth (c) and $3.50 per rectangular tablecloth (r). Which of the following represents the total cost (T) to rent tablecloths?

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$1/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses