ATI TEAS 7
ATI TEAS Math Practice Test
1. Solve for x: 4(2x - 6) = 10x - 6
- A. x = 5
- B. x = -7
- C. x = -9
- D. x = 10
Correct answer: C
Rationale: To solve the equation 4(2x - 6) = 10x - 6, first distribute 4 into the parentheses: 8x - 24 = 10x - 6. Next, simplify the equation by rearranging terms: 8x - 10x = -6 + 24, which gives -2x = 18. Solving for x by dividing by -2 on both sides gives x = -9. Therefore, the correct answer is x = -9. Choice A (x = 5), Choice B (x = -7), and Choice D (x = 10) are incorrect solutions obtained by errors in solving the equation.
2. Five of six numbers have a sum of 25. The average of all six numbers is 6. What is the sixth number?
- A. 8
- B. 10
- C. 11
- D. 12
Correct answer: C
Rationale: To find the sum of all six numbers, we multiply the average (6) by the total numbers (6), which equals 36. Since the sum of five numbers is 25, the sixth number can be found by subtracting the sum of five numbers from the total sum: 36 - 25 = 11. Therefore, the sixth number is 11. Choice A, 8, is incorrect because adding 8 to the sum of five numbers (25) would result in a total greater than the correct sum of all six numbers (36). Choice B, 10, is incorrect because adding 10 to the sum of five numbers (25) would also result in a total greater than the correct sum of all six numbers (36). Choice D, 12, is incorrect because adding 12 to the sum of five numbers (25) would exceed the correct sum of all six numbers (36).
3. In the winter of 2006, 6 inches of snow fell in Chicago, IL. The following winter, 3 inches of snowfall fell in Chicago. What was the percent decrease in snowfall in Chicago between those two winters?
- A. 69.40%
- B. 59.00%
- C. 41.00%
- D. 24.70%
Correct answer: C
Rationale: To calculate the percent decrease in snowfall between the two winters, use the formula: Percent Decrease = ((Initial Value - Final Value) / Initial Value) * 100. In this case, the initial value is 6 inches and the final value is 3 inches. Plug these values into the formula: ((6 - 3) / 6) * 100 = (3 / 6) * 100 = 0.5 * 100 = 50%. Therefore, the correct answer is 50%, which is not listed among the choices provided. Among the given choices, the closest percentage is 41.00%, which corresponds to choice C.
4. If a product's original price is $80 and it is discounted by 20%, what is the final price?
- A. 64
- B. 60
- C. 70
- D. 66
Correct answer: A
Rationale: To find the discounted price, you first calculate 20% of the original price: 20% of $80 is $16. Subtracting this discount amount from the original price gives the final price: $80 - $16 = $64. Therefore, the final price after a 20% discount on a product originally priced at $80 is $64. Choice B, $60, is incorrect because it does not account for the correct discount amount. Choice C, $70, is incorrect as it does not reflect the reduction due to the 20% discount. Choice D, $66, is incorrect as it miscalculates the discounted price.
5. What defines a proper fraction versus an improper fraction?
- A. Proper: numerator < denominator; Improper: numerator > denominator
- B. Proper: numerator > denominator; Improper: numerator < denominator
- C. Proper: numerator = denominator; Improper: numerator < denominator
- D. Proper: numerator < denominator; Improper: numerator = denominator
Correct answer: A
Rationale: A proper fraction is characterized by having a numerator smaller than the denominator, while an improper fraction has a numerator larger than the denominator. Therefore, choice A is correct. Choice B is incorrect because it states the opposite relationship between the numerator and denominator for proper and improper fractions. Choice C is incorrect as it describes a fraction where the numerator is equal to the denominator, which is a different concept. Choice D is incorrect as it associates a numerator being smaller than the denominator with an improper fraction, which is inaccurate.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access