ATI TEAS 7
ATI TEAS Math Practice Test
1. Solve for x: 4(2x - 6) = 10x - 6
- A. x = 5
- B. x = -7
- C. x = -9
- D. x = 10
Correct answer: C
Rationale: To solve the equation 4(2x - 6) = 10x - 6, first distribute 4 into the parentheses: 8x - 24 = 10x - 6. Next, simplify the equation by rearranging terms: 8x - 10x = -6 + 24, which gives -2x = 18. Solving for x by dividing by -2 on both sides gives x = -9. Therefore, the correct answer is x = -9. Choice A (x = 5), Choice B (x = -7), and Choice D (x = 10) are incorrect solutions obtained by errors in solving the equation.
2. Prizes are to be awarded to the best pupils in each class of an elementary school. The number of students in each grade is shown in the table, and the school principal wants the number of prizes awarded in each grade to be proportional to the number of students. If there are twenty prizes, how many should go to fifth-grade students? Grade 1 2 3 4 5 Students 35 38 38 33 36
- A. 5
- B. 4
- C. 7
- D. 3
Correct answer: C
Rationale: To determine how many prizes should be awarded to 5th-grade students, we need to set up the proportion of the number of 5th-grade students to the total number of students in the school. The total number of students is 35 + 38 + 38 + 33 + 36 = 180 students. To find the proportion of 5th-grade students, it would be 36/180 = 0.2. Since there are 20 prizes to be awarded, multiplying 0.2 by 20 gives us 4, which means 4 prizes should go to the 5th-grade students. Therefore, the correct answer is 4. Choice A (5) is incorrect as it does not align with the proportional distribution. Choice B (4) is the correct answer, as calculated. Choice C (7) is incorrect as it exceeds the total number of prizes available. Choice D (3) is incorrect as it does not match the proportional distribution based on the number of students.
3. Approximately how many people voted for the proposition if 9.5% of the town's population of 51,623 voted for it in a municipal election?
- A. 3,000
- B. 5,000
- C. 7,000
- D. 10,000
Correct answer: B
Rationale: To find the approximate number of people who voted for the proposition, multiply the town's population by the percentage that voted for it. 9.5% of 51,623 is about 0.095 * 51,623 ≈ 4,904. Rounded to the nearest thousand, this gives an estimate of 5,000 people. Therefore, choice B, '5,000,' is the correct answer. Choices A, C, and D are incorrect as they do not align with the calculated estimation.
4. The number of vacuum cleaners sold by a company per month during Year 1 is listed below: 18, 42, 29, 40, 24, 17, 29, 44, 19, 33, 46, 39. Which of the following is true?
- A. The mean is less than the median
- B. The mode is greater than the median
- C. The mode is less than the mean, median, and range
- D. The mode is equal to the range
Correct answer: D
Rationale: The mean number of vacuum cleaners sold per month is 31.7, the mode is 29, the median is 31, and the range is 29. The mode being equal to the range is the correct statement. Option A is incorrect because the mean (31.7) is greater than the median (31). Option B is incorrect as the mode (29) is not greater than the median (31). Option C is incorrect since the mode (29) is not less than the mean, median, or range.
5. What is the perimeter of a rectangle with a length of 7 cm and a width of 3 cm?
- A. 21 cm
- B. 10 cm
- C. 14 cm
- D. 20 cm
Correct answer: D
Rationale: To find the perimeter of a rectangle, you add the lengths of all its sides. In this case, the formula for the perimeter of a rectangle is 2*(length + width). Substituting the given values, we get: 2*(7 cm + 3 cm) = 2*(10 cm) = 20 cm. Therefore, the correct answer is 20 cm. Choice A (21 cm) is incorrect because it is the sum of the individual sides rather than the perimeter. Choice B (10 cm) is incorrect because it only represents one side of the rectangle. Choice C (14 cm) is incorrect as it is not the total perimeter of the rectangle.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access