ATI TEAS 7
TEAS Test Math Prep
1. A school has 15 teachers and 20 teaching assistants. They have 200 students. What is the ratio of faculty to students?
- A. 3:20
- B. 4:17
- C. 3:02
- D. 7:40
Correct answer: B
Rationale: The total number of faculty members is 15 teachers + 20 teaching assistants = 35. The ratio of faculty to students is then 35:200, which simplifies to 7:40. Further simplifying by dividing both numbers by 5 gives the ratio 4:20, which can be simplified to 4:17. Therefore, the correct ratio is 4:17. Choices A, C, and D are incorrect ratios and do not match the calculated ratio of faculty members to students in this scenario.
2. The force applied is directly proportional to the stretch of a coil. If a force of 132 Newtons stretches a coil 0.07 meters, what force would be needed to stretch a coil 0.1 meter? Round your answer to the nearest tenth.
- A. 92.4 Newtons
- B. 1885.7 Newtons
- C. 188.6 Newtons
- D. 136.0 Newtons
Correct answer: C
Rationale: To find the force needed to stretch the coil 0.1 meters, we can set up a proportion based on the given information. The initial force and stretch are in direct proportion, so we can use this relationship to determine the unknown force. (132 N / 0.07 m) = X / 0.1 m. Cross-multiplying, we get 132 N * 0.1 m / 0.07 m = 188.57 N, which rounds to 188.6 N. Therefore, the correct answer is 188.6 Newtons. Choice A is incorrect as it does not match the calculated answer. Choice B is significantly higher and does not align with the proportional relationship. Choice D is close but does not account for the correct rounding as specified in the question.
3. Robert scores three new clients every eight months. After how many months has he secured 24 new clients?
- A. 64
- B. 58
- C. 52
- D. 66
Correct answer: A
Rationale: To find out the number of months needed to secure 24 new clients, you can set up a proportion: 3 clients / 8 months = 24 clients / x months. Cross multiplying gives you 3x = 24 * 8. Solving for x: 3x = 192, x = 192 / 3, x = 64. Therefore, Robert will secure 24 new clients after 64 months. Choice A is correct. Choice B (58), Choice C (52), and Choice D (66) are incorrect as they do not align with the correct calculation based on the given proportion.
4. How much did he save from the original price?
- A. $170
- B. $212.50
- C. $105.75
- D. $200
Correct answer: B
Rationale: To calculate the amount saved from the original price, you need to subtract the discounted price from the original price. The formula is: Original price - Discounted price = Amount saved. In this case, the original price was $850, and the discounted price was $637.50. Therefore, $850 - $637.50 = $212.50. Hence, he saved $212.50 from the original price. Choice A ($170) is incorrect as it is not the correct amount saved. Choice C ($105.75) is incorrect as it does not match the calculated savings. Choice D ($200) is incorrect as it is not the accurate amount saved based on the given prices.
5. Simplify the expression: 2x + 3x - 5.
- A. 5x - 5
- B. 5x
- C. x - 5
- D. 2x - 5
Correct answer: A
Rationale: To simplify the expression 2π₯ + 3π₯ - 5, follow these steps: Identify and combine like terms. The terms 2π₯ and 3π₯ are both 'like terms' because they both contain the variable π₯. Add the coefficients of the like terms: 2π₯ + 3π₯ = 5π₯. Simplify the expression. After combining the like terms, the expression becomes 5π₯ - 5, which includes the simplified term 5π₯ and the constant -5. Thus, the fully simplified expression is 5π₯ - 5, making Option A the correct answer. This method ensures all terms are correctly simplified by combining similar elements and retaining constants.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access