which of the following percentages is equivalent to 5
Logo

Nursing Elites

ATI TEAS 7

Practice Math TEAS TEST

1. Which of the following percentages is equivalent to 5 ¼?

Correct answer: A

Rationale: To convert a mixed number to a decimal, 5 ¼ becomes 5.25. To convert this decimal to a percentage, you multiply it by 100. Therefore, 5.25 × 100 = 525%. Choice A is correct. Choice B (514%) is incorrect as it does not match the equivalent of 5 ¼. Choice C (5.25%) is the decimal equivalent of 5 ¼, not the percentage. Choice D (5.14%) is a different value and does not represent the percentage equivalent of 5 ¼.

2. Simplify the following expression: 1.034 + 0.275 - 1.294

Correct answer: A

Rationale: To simplify the expression, begin by adding 1.034 and 0.275, which equals 1.309. Then, subtract 1.294 from the sum: 1.309 - 1.294 = 0.015. Therefore, the correct answer is 0.015. Choice B (0.15) is incorrect as it does not reflect the accurate calculation. Choice C (1.5) is incorrect as it is not the correct result of the expression simplification. Choice D (-0.15) is incorrect as it represents a different value than the correct outcome of the expression simplification.

3. What is the result of adding 1/6 and 1/2, expressed in reduced form?

Correct answer: B

Rationale: To add 1/6 and 1/2, you need a common denominator, which is 6. So, 1/6 + 3/6 = 4/6. Simplifying 4/6 gives 2/3, which is the correct answer (1/3). Choices A, C, and D are incorrect as they do not represent the correct sum of the fractions 1/6 and 1/2.

4. During January, Dr. Lewis worked 20 shifts. During February, she worked three times as many shifts as she did during January. During March, she worked half the number of shifts she worked during February. Which equation below describes the number of shifts Dr. Lewis worked in March?

Correct answer: B

Rationale: During January, Dr. Lewis worked 20 shifts. Shifts for January = 20. During February, she worked three times as many shifts as she did during January. Shifts for February = (20)(3) = 60. During March, she worked half the number of shifts she worked in February. Shifts for March = (60)(1/2) = 30. Therefore, the correct equation to describe the number of shifts Dr. Lewis worked in March is 'shifts = (20)(3)(1/2)', representing the calculation based on the given scenario. Choices A, C, and D do not accurately represent the correct mathematical relationship between the shifts worked in the different months, making them incorrect.

5. A restaurant employs servers, hosts, and managers in a ratio of 9:2:1. If there are 36 total employees, what is the number of hosts at the restaurant?

Correct answer: C

Rationale: To find the number of hosts in the restaurant, first, express the ratio algebraically as 9x + 2x + 1x = 36, where x represents the common factor. Combine like terms to get 12x = 36. Solve for x by dividing both sides by 12 to get x = 3. To find the number of hosts, multiply the coefficient of hosts (2) by x, which equals 6. Therefore, there are 6 hosts at the restaurant. Choice A, 3, is incorrect as it represents the number of servers. Choices B and D are incorrect as they do not correspond to the number of hosts based on the given ratio.

Similar Questions

What defines a composite number?
When rounding 2678 to the nearest thousandth, which place value would be used to decide whether to round up or round down?
Erma has her eye on two sweaters at her favorite clothing store, but she has been waiting for the store to offer a sale. This week, the store advertises 25% off a second item of equal or lesser value. One sweater is $50, and the other is $44. What will Erma spend?
Express 18/5 as a reduced mixed number.
The hypotenuse (side C) of a triangle is 13 inches long. Which of the following pairs of measurements could be correct for the lengths of the other two sides of the triangle? (Note: A² + B² = C²)

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses