a restaurant employs servers hosts and managers in a ratio of 921 if there are 36 total employees which of the following is the number of hosts at the
Logo

Nursing Elites

ATI TEAS 7

TEAS Exam Math Practice

1. A restaurant employs servers, hosts, and managers in a ratio of 9:2:1. If there are 36 total employees, what is the number of hosts at the restaurant?

Correct answer: C

Rationale: To find the number of hosts in the restaurant, first, express the ratio algebraically as 9x + 2x + 1x = 36, where x represents the common factor. Combine like terms to get 12x = 36. Solve for x by dividing both sides by 12 to get x = 3. To find the number of hosts, multiply the coefficient of hosts (2) by x, which equals 6. Therefore, there are 6 hosts at the restaurant. Choice A, 3, is incorrect as it represents the number of servers. Choices B and D are incorrect as they do not correspond to the number of hosts based on the given ratio.

2. Simplify the following expression: 5/9 × 15/36

Correct answer: A

Rationale: To simplify the given expression, multiply the numerators together and the denominators together. 5/9 × 15/36 = (5 × 15) / (9 × 36) = 75 / 324. Now, simplify the resulting fraction by finding the greatest common divisor (GCD) of 75 and 324, which is 3. Divide both the numerator and denominator by 3 to get the simplified fraction: 75 ÷ 3 / 324 ÷ 3 = 25 / 108. Therefore, the simplified form of 5/9 × 15/36 is 25/108, which is equivalent to 5/36. Choice A, 5/36, is the correct answer. Choice B, 8/27, is incorrect as it does not match the simplified form of the expression. Choice C, 10/17, is unrelated and does not result from the given multiplication. Choice D, 15/27, does not correspond to the simplification of the given expression.

3. A patient is prescribed 5 mg of medication per kilogram of body weight. If the patient weighs 60 kg, how many milligrams of medication should the patient receive?

Correct answer: C

Rationale: The correct calculation to determine the medication dosage for a patient weighing 60 kg is: 5 mg/kg x 60 kg = 300 mg. Therefore, the patient should receive 300 mg of medication. Choice A (100 mg) is incorrect as it does not account for the patient's weight. Choice B (150 mg) is incorrect as it miscalculates the dosage. Choice D (400 mg) is incorrect as it overestimates the dosage based on the patient's weight.

4. Solve the following equation: 3(2y+50)−4y=500

Correct answer: B

Rationale: To solve the equation 3(2y+50)−4y=500, first distribute to get 6y+150−4y=500. Combining like terms results in 2𝑦 + 150 = 500. By subtracting 150 from both sides, we get 2y = 350. Dividing by 2 gives y = 175. Therefore, the correct answer is B. Choices A, C, and D are incorrect because they do not correctly follow the steps of distributing, combining like terms, and isolating the variable to solve for y.

5. What is 4 + 5 + 12 + 9?

Correct answer: B

Rationale: The correct answer is B: 30. To find the sum, you need to add 4 + 5 + 12 + 9, which equals 30. Choice A (20) is incorrect because it does not account for the correct addition of the numbers provided. Choice C (40) is incorrect as it represents the sum of the numbers incorrectly. Choice D (50) is also incorrect as it is not the sum of the given numbers.

Similar Questions

What is the percentage equivalent of 0.0016?
If you have a rectangle with a width of 5 inches and a length of 10 inches and scale it by a factor of 2, what will the new perimeter be?
Solve the system of equations. Equation 1: 2x + y = 0 Equation 2: x - 2y = 8
A recipe calls for 2.5 teaspoons of vanilla. 1 teaspoon equals approximately 4.93 mL. Which of the following is the correct amount of vanilla in mL?
Anna is buying fruit at the farmers’ market. She selects 1.2 kilograms of apples, 800 grams of bananas, and 300 grams of strawberries. The farmer charges her a flat rate of $4 per kilogram. What is the total cost of her produce?

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses