ATI TEAS 7
TEAS Exam Math Practice
1. Adam is painting the outside of a 4-walled shed. The shed is 5 feet wide, 4 feet deep, and 7 feet high. Which of the following is the amount of paint Adam will need for the four walls?
- A. 80 ft²
- B. 126 ft²
- C. 140 ft²
- D. 560 ft²
Correct answer: B
Rationale: To find the amount of paint needed for the four walls of the shed, calculate the total area of the four walls. The shed has two pairs of identical walls. The area of one pair of walls is 5 feet (width) x 7 feet (height) + 4 feet (depth) x 7 feet (height) = 35 ft² + 28 ft² = 63 ft². Since there are two pairs of walls, the total area for the four walls is 2 x 63 ft² = 126 ft². Therefore, Adam will need 126 ft² of paint for the four walls. Choice A, 80 ft², is incorrect as it does not account for the total surface area of all four walls. Choice C, 140 ft², is incorrect as it overestimates the area required. Choice D, 560 ft², is incorrect as it significantly overestimates the amount of paint needed for the shed.
2. In a class of 30 students, with 60% boys and 40% girls, how many girls are in the class?
- A. 18 girls
- B. 12 girls
- C. 15 girls
- D. 10 girls
Correct answer: B
Rationale: To find the number of girls in the class, we need to calculate 40% of the total number of students, which is 30. 40% of 30 is 0.40 * 30 = 12 girls. Therefore, there are 12 girls in the class. Choice A, 18 girls, is incorrect as it miscalculates the percentage. Choice C, 15 girls, is incorrect as it misrepresents the correct calculation. Choice D, 10 girls, is incorrect as it underestimates the number of girls in the class.
3. A quantity increases from 40 to 60. Express this increase as a percentage.
- A. 26%
- B. 50%
- C. 35%
- D. 12%
Correct answer: B
Rationale: To calculate the percentage increase, use the formula: Percentage Increase = ((New Value - Original Value) / Original Value) x 100 Substitute the values: ((60 - 40) / 40) x 100 = (20 / 40) x 100 = 0.5 x 100 = 50% Therefore, the correct answer is 50%. Choice A (26%) is incorrect as the percentage increase is not 26%. Choice C (35%) is incorrect as the percentage increase is not 35%. Choice D (12%) is incorrect as the percentage increase is not 12%.
4. Simplify the expression. Which of the following is the value of x? (5(4x – 5) = (3/2)(2x – 6))
- A. −(2/7)
- B. −(4/17)
- C. (16/17)
- D. (8/7)
Correct answer: C
Rationale: To solve the given proportion 5(4x – 5) = (3/2)(2x – 6), first distribute to get 20x - 25 = 3x - 9. Then, simplify the linear equation by isolating x: 20x - 3x = 25 - 9, which leads to 17x = 16. Finally, solving for x gives x = 16/17. Choice A is incorrect as it does not match the calculated value of x. Choice B is incorrect as it does not correspond to the correct solution for x. Choice D is incorrect as it does not align with the accurate value of x obtained from solving the equation.
5. When rounding 245.2678 to the nearest thousandth, which place value would be used to decide whether to round up or round down?
- A. Ten-thousandths
- B. Thousandths
- C. Hundredths
- D. Thousand
Correct answer: A
Rationale: When rounding a number to the nearest thousandth, you look at the digit in the ten-thousandths place to determine whether to round up or down the digit in the thousandths place. In this case, rounding 245.2678 to the nearest thousandth, the digit in the ten-thousandths place is 6, which is greater than or equal to 5, so you would round up the digit in the thousandths place. Therefore, the correct answer is the ten-thousandths place. Choices B, C, and D are incorrect because they do not directly influence the rounding of the thousandths place in this scenario.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access