ATI TEAS 7
ATI TEAS Math Practice Test
1. In a research study, a researcher collects data on the number of hours spent studying and the grades students received. Which of the following is the dependent variable?
- A. The number of hours spent studying
- B. The grades students received
- C. The subjects students studied
- D. The number of students in the study
Correct answer: B
Rationale: The correct answer is B: 'The grades students received.' In this scenario, the grades students received are the dependent variable because they are influenced by the number of hours spent studying. The grades are the outcome that is being measured based on the manipulation or observation of the independent variable, which in this case is the number of hours spent studying. Choices A, C, and D are incorrect. The number of hours spent studying is the independent variable being manipulated or observed, the subjects students studied is not directly related to the dependent variable, and the number of students in the study is not the variable being measured or influenced by the independent variable.
2. One gallon of cleaning solution requires 6 oz of ammonia. If the maintenance department needs 230 gallons of solution to clean all of the floors, how much ammonia is needed?
- A. 1380 gallons
- B. 6900 gallons
- C. 1380 oz
- D. 1400 oz
Correct answer: C
Rationale: To find out how much ammonia is needed for 230 gallons of cleaning solution, you multiply the amount of ammonia needed per gallon by the total gallons of solution required. Therefore, 230 gallons * 6 oz/gallon = 1380 oz of ammonia. Option A ('1380 gallons') and Option B ('6900 gallons') are incorrect as the question asks for the amount of ammonia needed, not the total volume of cleaning solution. Option D ('1400 oz') is incorrect as it does not correctly calculate the amount of ammonia required based on the given information.
3. Dr. Lee observed that 30% of all his patients developed an infection after taking a certain antibiotic. He further noticed that 5% of those 30% required hospitalization to recover from the infection. What percentage of Dr. Lee's patients were hospitalized after taking the antibiotic?
- A. 1.50%
- B. 5%
- C. 15%
- D. 30%
Correct answer: C
Rationale: Out of all the patients who took the antibiotic, 30% developed an infection. Among those with infections, 5% required hospitalization. To find the percentage of all patients hospitalized, we multiply the two percentages: 30% * 5% = 1.5%. Therefore, 1.5% of all patients were hospitalized. Choice A (1.50%) is the calculated percentage of all patients hospitalized, not 1.50%. Choice B (5%) is the percentage of patients who developed an infection and required hospitalization, not all patients. Choice D (30%) represents the initial percentage of patients who developed an infection, not the percentage hospitalized.
4. What is the least common denominator of two fractions?
- A. The smallest number that is a multiple of both denominators
- B. The smallest number that both fractions can divide into evenly
- C. The least common multiple of both denominators
- D. The greatest common factor of both denominators
Correct answer: C
Rationale: The least common denominator of two fractions is the least common multiple of both denominators. This is because the least common denominator is the smallest number that both denominators can divide into evenly, ensuring that both fractions can be expressed with a common denominator. Choice A is incorrect as the least common denominator is a multiple of both denominators, not a number that multiplies into both. Choice B is incorrect because the common denominator needs to be a multiple of both denominators, not just a number they can divide into evenly. Choice D is incorrect as the greatest common factor is not used to find the least common denominator, but rather the least common multiple.
5. While at the local ice skating rink, Cora went around the rink 27 times in total. She slipped and fell 20 of the 27 times she skated around the rink. What approximate percentage of the times around the rink did Cora not slip and fall?
- A. 37%
- B. 74%
- C. 26%
- D. 15%
Correct answer: C
Rationale: To find the approximate percentage of the times Cora did not slip and fall, subtract the times she fell (20) from the total times around the rink (27), which gives 7. Then, divide the number of times she did not slip and fall (7) by the total times around the rink (27) and multiply by 100 to get the percentage. So, 7 divided by 27 equals 0.259, which rounds to approximately 26%. Therefore, the correct answer is 26%. Choice A (37%) is incorrect because it does not reflect the calculation based on the given information. Choice B (74%) is incorrect as it is not the result of the correct calculation. Choice D (15%) is incorrect as it does not match the calculated percentage based on the scenario provided.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access