simplify the following expression 14 35 1 18
Logo

Nursing Elites

ATI TEAS 7

ATI TEAS Math Practice Test

1. Simplify the following expression: (1/4) × (3/5) ÷ 1 (1/8)

Correct answer: C

Rationale: First, convert the mixed number 1 (1/8) into an improper fraction: 1 (1/8) = 9/8. Now, simplify the expression: (1/4) × (3/5) ÷ (9/8). To divide by a fraction, multiply by its reciprocal: (1/4) × (3/5) × (8/9) = 24/180 = 2/15. Thus, the simplified expression is 2/15. Choice A (8/15) is incorrect because the correct answer is 2/15. Choice B (27/160) is incorrect as it is not the result of the given expression. Choice D (27/40) is incorrect as it does not match the simplified expression obtained.

2. The owner of a newspaper has noticed that print subscriptions have gone down 40% while online subscriptions have gone up 60%. Print subscriptions once accounted for 70% of the newspaper’s business, and online subscriptions accounted for 25%. What is the overall percentage growth or decline in business?

Correct answer: A

Rationale: To calculate the decline in business, start with the 40% decline in the 70% share of print subscriptions: 40% of 70% = 0.40 × 0.70 = 0.28 = 28% decline. Next, calculate the growth from the 60% increase in the 25% share of online subscriptions: 60% of 25% = 0.60 × 0.25 = 0.15 = 15% growth. To find the overall change, sum the decline and growth percentages: 28% decline + 15% growth = -0.28 + 0.15 = -0.13 = 13% decline. Therefore, the overall percentage change in the newspaper's business is a 13% decline. Option A is the correct answer. Option B is incorrect because it doesn't consider the correct calculations for both the decline and growth. Option C is incorrect as it misinterprets the net change in business. Option D is incorrect as it miscalculates the overall percentage growth or decline.

3. Which of the following is the independent variable in the equation below? f(t)=4t+9

Correct answer: C

Rationale: The independent variable in a function is the variable that is being manipulated or changed to obtain different values. In the equation f(t) = 4t + 9, the variable 't' is the independent variable. It is the variable that the function f(t) depends on, and changing its value will result in different outputs for the function. The other choices, 'f', '9', and '4', are not the independent variable as they do not represent the variable that is being manipulated to determine the function's output.

4. Solve for x: 2x - 7 = 3

Correct answer: D

Rationale: To solve the equation for x, follow these steps: 2x - 7 = 3. Add 7 to both sides to isolate 2x, resulting in 2x = 10. Then, divide by 2 on both sides to find x, which gives x = 5. Therefore, the correct answer is x = 5. Choices A, B, and C are incorrect because they do not accurately solve the equation.

5. How much did he save from the original price?

Correct answer: B

Rationale: To calculate the amount saved from the original price, you need to subtract the discounted price from the original price. The formula is: Original price - Discounted price = Amount saved. In this case, the original price was $850, and the discounted price was $637.50. Therefore, $850 - $637.50 = $212.50. Hence, he saved $212.50 from the original price. Choice A ($170) is incorrect as it is not the correct amount saved. Choice C ($105.75) is incorrect as it does not match the calculated savings. Choice D ($200) is incorrect as it is not the accurate amount saved based on the given prices.

Similar Questions

You measure the width of your door to be 36 inches. The true width of the door is 75 inches. What is the relative error in your measurement?
How do you convert pounds to kg and kg to pounds?
How do you find the least common multiple?
Solve for x: 3(x - 5) = 2(x + 3)
A car travels 60 miles in 1 hour. How long will it take to travel 180 miles at the same speed?

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$49/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses