ATI TEAS 7
TEAS Practice Math Test
1. How many centimeters are in 7 meters?
- A. 7 m = 7 cm
- B. 7 m = 70 cm
- C. 7 m = 700 cm
- D. 7 m = 7000 cm
Correct answer: C
Rationale: The prefix 'centi-' means one-hundredth. In the metric system, 1 meter is equal to 100 centimeters. Therefore, to convert meters to centimeters, you multiply the number of meters by 100. In this case, 7 meters is equal to 7 * 100 = 700 centimeters. Choice A is incorrect as it does not consider the conversion factor properly. Choice B is incorrect as it only accounts for a factor of 10 instead of 100. Choice D is incorrect as it overestimates the conversion by a factor of 10.
2. Which of the following is the greatest value?
- A. 43 ÷ 55
- B. 7 ÷ 5
- C. 0.729
- D. 73%
Correct answer: B
Rationale: To determine the greatest value among the choices, you need to convert all options to a common format. In this case, converting fractions to decimals will help compare them. When 7 ÷ 5 is calculated, it equals 1.4, which is greater than 0.729 (choice C) and 0.78 (choice A when rounded). The percentage 73% (choice D) is equivalent to 0.73, making 7 ÷ 5 the largest value. Therefore, the correct answer is B. Choice A is smaller than B, as 43 ÷ 55 equals approximately 0.78. Choice C is smaller than B, as 0.729 is less than 1.4. Choice D is smaller than B, as 73% is equal to 0.73, which is less than 1.4.
3. Apply the polynomial identity to rewrite (a + b)².
- A. a² + b²
- B. 2ab
- C. a² + 2ab + b²
- D. a² - 2ab + b²
Correct answer: C
Rationale: When you see something like (a + b)², it means you're multiplying (a + b) by itself: (a + b)² = (a + b) × (a + b) To expand this, we use the distributive property (which says you multiply each term in the first bracket by each term in the second bracket): Multiply the first term in the first bracket (a) by both terms in the second bracket: a × a = a² a × b = ab Multiply the second term in the first bracket (b) by both terms in the second bracket: b × a = ab b × b = b² Now, add up all the results from the multiplication: a² + ab + ab + b² Since ab + ab is the same as 2ab, we can simplify it to: a² + 2ab + b² So, (a + b)² = a² + 2ab + b². This is known as a basic polynomial identity, and it shows that when you square a binomial (a two-term expression like a + b), you get three terms: the square of the first term (a²), twice the product of the two terms (2ab), and the square of the second term (b²). Therefore, the correct answer is C (a² + 2ab + b²)
4. If you pull an orange block from a bag of 3 orange, 5 green, and 4 purple blocks, what is the probability of consecutively pulling two more orange blocks without replacement?
- A. 1/12
- B. 3/55
- C. 1/55
- D. 2/33
Correct answer: B
Rationale: To calculate the probability of pulling two more orange blocks consecutively without replacement after the initial orange block is pulled, we need to multiply the probabilities. After the first orange block is pulled, there are 2 orange blocks left out of a total of 11 blocks remaining. So, the probability of pulling a second orange block is 2/11. Therefore, the overall probability is (3/12) * (2/11) = 3/55. Choice A (1/12) is incorrect because it only considers the probability of the first orange block being pulled. Choice C (1/55) is incorrect as it represents the probability of pulling two orange blocks in a row, not the consecutive pulls after the initial pull. Choice D (2/33) is incorrect as it does not reflect the correct calculation for the consecutive pulls of orange blocks.
5. Cora skated around the rink 27 times but fell 20 times. What percentage of the time did she not fall?
- A. 0.37
- B. 0.74
- C. 0.26
- D. 0.15
Correct answer: C
Rationale: To find the percentage of the time Cora did not fall, subtract the number of times she fell (20) from the total number of times she skated around the rink (27). This gives us 27 - 20 = 7 times she did not fall. To express this as a percentage, calculate (7/27) * 100% = 25.93%, which is approximately 26%. Therefore, the correct answer is 0.26 (C). Choice A (0.37), Choice B (0.74), and Choice D (0.15) are incorrect as they do not represent the percentage of the time Cora did not fall based on the information provided.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access