ATI TEAS 7
TEAS Practice Math Test
1. Robert scores three new clients every eight months. After how many months has he secured 24 new clients?
- A. 64
- B. 58
- C. 52
- D. 66
Correct answer: A
Rationale: To find out the number of months needed to secure 24 new clients, you can set up a proportion: 3 clients / 8 months = 24 clients / x months. Cross multiplying gives you 3x = 24 * 8. Solving for x: 3x = 192, x = 192 / 3, x = 64. Therefore, Robert will secure 24 new clients after 64 months. Choice A is correct. Choice B (58), Choice C (52), and Choice D (66) are incorrect as they do not align with the correct calculation based on the given proportion.
2. Apply the polynomial identity to rewrite (a + b)².
- A. a² + b²
- B. 2ab
- C. a² + 2ab + b²
- D. a² - 2ab + b²
Correct answer: C
Rationale: When you see something like (a + b)², it means you're multiplying (a + b) by itself: (a + b)² = (a + b) × (a + b) To expand this, we use the distributive property (which says you multiply each term in the first bracket by each term in the second bracket): Multiply the first term in the first bracket (a) by both terms in the second bracket: a × a = a² a × b = ab Multiply the second term in the first bracket (b) by both terms in the second bracket: b × a = ab b × b = b² Now, add up all the results from the multiplication: a² + ab + ab + b² Since ab + ab is the same as 2ab, we can simplify it to: a² + 2ab + b² So, (a + b)² = a² + 2ab + b². This is known as a basic polynomial identity, and it shows that when you square a binomial (a two-term expression like a + b), you get three terms: the square of the first term (a²), twice the product of the two terms (2ab), and the square of the second term (b²). Therefore, the correct answer is C (a² + 2ab + b²)
3. How many milliliters (mL) are there in a liter?
- A. 1000 mL
- B. 100 mL
- C. 10 mL
- D. 1 mL
Correct answer: A
Rationale: The correct answer is A: 1000 mL. This is a standard conversion in the metric system where 1 liter is equivalent to 1000 milliliters. Choice B, 100 mL, is incorrect as it represents only a tenth of a liter. Choice C, 10 mL, is incorrect as it represents only a hundredth of a liter. Choice D, 1 mL, is significantly less than a liter, as it is only a thousandth of a liter.
4. Solve the equation 8x − 6 = 3x + 24. Which of the following is the correct solution?
- A. x = 2.5
- B. x = 3.6
- C. x = 5
- D. x = 6
Correct answer: D
Rationale: To solve the equation 8x − 6 = 3x + 24, start by adding 6 to both sides: 8x − 6 + 6 = 3x + 24 + 6, which simplifies to 8x = 3x + 30. Next, subtract 3x from both sides to get 5x = 30. Finally, divide both sides by 5 to solve for x: x = 6. Therefore, the correct solution is x = 6. Choices A, B, and C are incorrect because they do not result from the correct algebraic manipulation of the equation.
5. Which of the following options correctly orders the numbers below from least to greatest? 235.971, 145.884, -271.906, -193.823
- A. -271.906, -193.823, 145.884, 235.971
- B. -271.906, 235.971, -193.823, 145.884
- C. 145.884, -193.823, 235.971, -271.906
- D. -193.823, -271.906, 145.884, 235.971
Correct answer: A
Rationale: To correctly order the numbers from least to greatest, we start with the smallest number, which is -271.906, followed by -193.823, 145.884, and finally 235.971. Therefore, the correct order is -271.906, -193.823, 145.884, 235.971. Choice A is correct. Choice B is incorrect as it incorrectly places 235.971 before -193.823. Choice C is incorrect as it starts with the largest number, 145.884. Choice D is incorrect as it starts with -193.823, which is not the smallest number in the list.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access