robert scores three new clients every eight months after how many months has he secured 24 new clients
Logo

Nursing Elites

ATI TEAS 7

TEAS Practice Math Test

1. Robert scores three new clients every eight months. After how many months has he secured 24 new clients?

Correct answer: A

Rationale: To find out the number of months needed to secure 24 new clients, you can set up a proportion: 3 clients / 8 months = 24 clients / x months. Cross multiplying gives you 3x = 24 * 8. Solving for x: 3x = 192, x = 192 / 3, x = 64. Therefore, Robert will secure 24 new clients after 64 months. Choice A is correct. Choice B (58), Choice C (52), and Choice D (66) are incorrect as they do not align with the correct calculation based on the given proportion.

2. If 3/4 of students at a university major in nursing and 1/3 of those students complete the program, how many will complete the program if 100 students are in the incoming class?

Correct answer: C

Rationale: Out of the 100 students, 3/4 (75 students) major in nursing. Since 1/3 of those students complete the program, 1/3 * 75 = 25 students will complete the program. Therefore, 25 students out of the 100 incoming class will complete the program, making choice C (15) the correct answer. Choices A, B, and D are incorrect as they do not reflect the correct calculation based on the given information.

3. What is the solution to 4 x 7 + (25 – 21)²?

Correct answer: C

Rationale: To find the solution, first solve the expression inside the parentheses: 25 - 21 = 4. Then, square the result from the parentheses: 4² = 16. Next, perform the multiplication: 4 x 7 = 28. Finally, add the results: 28 + 16 = 44. Therefore, the correct answer is 44. Choice A (512), Choice B (36), and Choice D (22) are incorrect as they do not follow the correct order of operations for solving the given mathematical expression.

4. A homeowner has hired two people to mow his lawn. If person A is able to mow the lawn in 2 hours by herself and person B is able to mow the lawn in 3 hours by himself, what is the amount of time it would take for both person A and B to mow the lawn together?

Correct answer: C

Rationale: To find the combined work rate, you add the individual work rates: 1/2 + 1/3 = 5/6. This means that together, they can mow 5/6 of the lawn per hour. To determine how long it would take for both A and B to mow the entire lawn, you take the reciprocal of 5/6, which gives you 6/5 or 1.2 hours. Therefore, it would take 1.2 hours for person A and person B to mow the lawn together. Choice A (5 hours) is incorrect because it does not consider the combined efficiency of both workers. Choice B (2.5 hours) is incorrect as it does not reflect the correct calculation based on the combined work rates of the two individuals. Choice D (1 hour) is incorrect as it doesn't consider the fact that the combined rate is less than the individual rate of person A alone, thus taking longer than 1 hour.

5. A sandwich shop earns $4 for every sandwich (s) it sells, $2 for every drink (d), and $1 for every cookie (c). If this is all the shop sells, which of the following equations represents what the shop’s revenue (r) is over three days?

Correct answer: A

Rationale: Let s be the number of sandwiches sold. Each sandwich earns $4, so selling s sandwiches at $4 each results in revenue of $4s. Similarly, d drinks at $2 each give $2d of income, and cookies bring in $1c. Summing these values gives total revenue = 4s + 2d + 1c. Therefore, option A, r = 4s + 2d + 1c, correctly represents the shop's revenue. Choices B, C, and D are incorrect because they incorrectly multiply the prices of each item by more than one day's sales, which would overstate the total revenue for a three-day period.

Similar Questions

A teacher asked all the students in the class which days of the week they get up after 8 a.m. Which of the following is the best way to display the frequency for each day of the week?
Simplify the following expression: 4 * (2/3) ÷ 1 * (1/6)
Simplify the following expression: 3 (1/6) - 1 (5/6)
What is the value of the sum of 3/4 and 5/8?
A charter bus driver drove at an average speed of 65 mph for 305 miles. If he stops at a gas station for 15 minutes, then drives another 162 miles at an average speed of 80 mph, how long will it have been since he began the trip?

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses