ATI TEAS 7
TEAS Test Math Questions
1. What is the difference between two negative numbers?
- A. Negative number
- B. Positive number
- C. Zero
- D. Not enough information
Correct answer: B
Rationale: The correct answer is B: 'Positive number.' When you subtract one negative number from another negative number, the result can be a positive number. For example, the difference between -5 and -3 is 2, which is a positive number. Choice A, 'Negative number,' is incorrect because the result of subtracting two negative numbers can be positive. Choice C, 'Zero,' is incorrect because the difference between two negative numbers is not always zero. Choice D, 'Not enough information,' is incorrect because there is enough information to determine that the difference between two negative numbers can be a positive number.
2. The phone bill is calculated each month using the equation y = 50x. The cost of the phone bill per month is represented by y and x represents the gigabytes of data used that month. What is the value and interpretation of the slope of this equation?
- A. 75 dollars per day
- B. 75 gigabytes per day
- C. 50 dollars per day
- D. 50 dollars per gigabyte
Correct answer: D
Rationale: The slope of the equation y = 50x is 50, which means that for each additional gigabyte of data used, the cost increases by 50 dollars. Therefore, the interpretation of the slope is that it represents the cost per gigabyte, making '50 dollars per gigabyte' the correct answer. Choices A, B, and C are incorrect because they do not reflect the relationship between the cost and the amount of data used in the given equation.
3. What is a factor?
- A. A number that you multiply to get another number
- B. A number that divides evenly into another number
- C. A number that can be both multiplied and divided by another number
- D. A number that is greater than 1
Correct answer: A
Rationale: A factor is a number that can be multiplied by another number to produce a third number. When you multiply factors together, you get the original number. For example, the factors of 12 are 1, 2, 3, 4, 6, and 12 because these numbers can be multiplied in pairs to give the product 12. Choice B is incorrect as it describes a divisor. Choice C is incorrect because factors are only multiplied, not divided. Choice D is incorrect because factors can be any number, not just those greater than 1.
4. Lauren must travel a distance of 1,480 miles to get to her destination. She plans to drive approximately the same number of miles per day for 5 days. Which of the following is a reasonable estimate of the number of miles she will drive per day?
- A. 240 miles
- B. 260 miles
- C. 300 miles
- D. 340 miles
Correct answer: C
Rationale: To estimate the number of miles Lauren will drive per day, the total distance can be rounded to 1,500 miles. Divide this by the number of days she plans to drive, which is 5. 1,500 miles / 5 days = 300 miles per day. Therefore, a reasonable estimate for the number of miles she will drive per day is 300. Choice A (240 miles) is too low, Choice B (260 miles) is slightly low, and Choice D (340 miles) is too high when considering the total distance and the number of days Lauren plans to drive.
5. A charter bus driver drove at an average speed of 65 mph for 305 miles. If he stops at a gas station for 15 minutes, then drives another 162 miles at an average speed of 80 mph, how long will it have been since he began the trip?
- A. 0.96 hours
- B. 6.44 hours
- C. 6.69 hours
- D. 6.97 hours
Correct answer: D
Rationale: To find the total time, we first calculate the time taken for the first leg of the trip by dividing the distance of 305 miles by the speed of 65 mph, which equals 4.69 hours. After that, we add the 15 minutes spent at the gas station, which is 0.25 hours. Next, we calculate the time taken for the second leg of the trip by dividing the distance of 162 miles by the speed of 80 mph, which equals 2.03 hours. Adding these times together (4.69 hours + 0.25 hours + 2.03 hours) gives us a total time of 6.97 hours. Therefore, it will have been 6.97 hours since the driver began the trip. Choice A is incorrect as it does not account for the time spent driving the second leg of the trip. Choice B is incorrect as it only considers the time for the first leg of the trip and the time spent at the gas station. Choice C is incorrect as it misses the time taken for the second leg of the trip.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access