ATI TEAS 7
TEAS Practice Math Test
1. A lab technician took 100 hairs from a patient to conduct several tests. The technician used 1/7 of the hairs for a drug test. How many hairs were used for the drug test? (Round your answer to the nearest hundredth.)
- A. 14
- B. 14.2
- C. 14.29
- D. 14.3
Correct answer: C
Rationale: To find how many hairs were used for the drug test, you need to calculate 1/7 of 100. 1/7 of 100 is 14.2857, which rounds to 14.29 when rounded to the nearest hundredth. Therefore, 14.29 hairs were used for the drug test. Choice A is incorrect as it does not account for rounding to the nearest hundredth. Choices B and D are incorrect as they do not accurately reflect the calculated value after rounding.
2. Simplify the following expression: 5/9 × 15/36
- A. 5/36
- B. 8/27
- C. 10/17
- D. 15/27
Correct answer: A
Rationale: To simplify the given expression, multiply the numerators together and the denominators together. 5/9 × 15/36 = (5 × 15) / (9 × 36) = 75 / 324. Now, simplify the resulting fraction by finding the greatest common divisor (GCD) of 75 and 324, which is 3. Divide both the numerator and denominator by 3 to get the simplified fraction: 75 ÷ 3 / 324 ÷ 3 = 25 / 108. Therefore, the simplified form of 5/9 × 15/36 is 25/108, which is equivalent to 5/36. Choice A, 5/36, is the correct answer. Choice B, 8/27, is incorrect as it does not match the simplified form of the expression. Choice C, 10/17, is unrelated and does not result from the given multiplication. Choice D, 15/27, does not correspond to the simplification of the given expression.
3. Prizes are to be awarded to the best pupils in each class of an elementary school. The number of students in each grade is shown in the table, and the school principal wants the number of prizes awarded in each grade to be proportional to the number of students. If there are twenty prizes, how many should go to fifth-grade students? Grade 1 2 3 4 5 Students 35 38 38 33 36
- A. 5
- B. 4
- C. 7
- D. 3
Correct answer: C
Rationale: To determine how many prizes should be awarded to 5th-grade students, we need to set up the proportion of the number of 5th-grade students to the total number of students in the school. The total number of students is 35 + 38 + 38 + 33 + 36 = 180 students. To find the proportion of 5th-grade students, it would be 36/180 = 0.2. Since there are 20 prizes to be awarded, multiplying 0.2 by 20 gives us 4, which means 4 prizes should go to the 5th-grade students. Therefore, the correct answer is 4. Choice A (5) is incorrect as it does not align with the proportional distribution. Choice B (4) is the correct answer, as calculated. Choice C (7) is incorrect as it exceeds the total number of prizes available. Choice D (3) is incorrect as it does not match the proportional distribution based on the number of students.
4. What is the area of a triangle with a base of 10 cm and a height of 7 cm?
- A. 70 cm²
- B. 35 cm²
- C. 140 cm²
- D. 100 cm²
Correct answer: B
Rationale: To find the area of a triangle, you use the formula A = 1/2 × base × height. Substituting the given values: A = 1/2 × 10 cm × 7 cm = 35 cm². Therefore, the correct answer is B. Choice A (70 cm²) is incorrect as it seems to be the product of the base and height rather than the area formula. Choice C (140 cm²) is incorrect as it appears to be twice the correct answer, possibly a result of a miscalculation. Choice D (100 cm²) is incorrect as it does not reflect the correct calculation based on the given base and height values.
5. A mathematics test has a 4:2 ratio of data analysis problems to algebra problems. If the test has 18 algebra problems, how many data analysis problems are on the test?
- A. 24
- B. 28
- C. 36
- D. 38
Correct answer: C
Rationale: The ratio of 4:2 simplifies to 2:1. This means that for every 2 algebra problems, there is 1 data analysis problem. If there are 18 algebra problems, we can set up a proportion: 2 algebra problems correspond to 1 data analysis problem. Therefore, 18 algebra problems correspond to x data analysis problems. Solving the proportion, x = 18 * 1 / 2 = 9. Hence, there are 9 data analysis problems on the test. Therefore, the total number of data analysis problems on the test is 18 (algebra problems) + 9 (data analysis problems) = 27.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access