if 35 of a paycheck was deducted for taxes and 4 for insurance what is the total percent taken out of the paycheck
Logo

Nursing Elites

ATI TEAS 7

TEAS Test Practice Math

1. If 35% of a paycheck is deducted for taxes and 4% for insurance, what is the total percent taken out of the paycheck?

Correct answer: C

Rationale: When 35% is deducted for taxes and 4% for insurance, the total percentage taken out of the paycheck is 35% + 4% = 39%. Therefore, the correct answer is 39%, which corresponds to option C. Option A (20%) is incorrect because it does not account for the total deductions. Option B (31%) is incorrect as it does not sum up the percentages correctly. Option D (42%) is incorrect as it overestimates the total deductions.

2. Given the double bar graph shown below, which of the following statements is true?

Correct answer: B

Rationale: The correct answer is B. In a double bar graph, Group A is positively skewed, meaning its data is clustered on the left and has a tail extending to the right. On the other hand, Group B displays a normal distribution where the data is evenly distributed around the mean. Choices A, C, and D are incorrect as they inaccurately describe the skewness and distribution of the data in Group A and Group B.

3. A commuter survey counts the people riding in cars on a highway in the morning. Each car contains only one man, only one woman, or both one man and one woman. Out of 25 cars, 13 contain a woman and 20 contain a man. How many contain both a man and a woman?

Correct answer: C

Rationale: Let's denote the number of cars containing only a man as M, only a woman as W, and both a man and a woman as B. Given that there are 25 cars in total, we have: M + W + B = 25 From the information provided, we know that 13 cars contain a woman (W) and 20 cars contain a man (M). Since each car contains either one man, one woman, or both, the cars that contain both a man and a woman (B) are counted once in each of the M and W categories. Therefore, to find out how many cars contain both a man and a woman, we need to subtract the number of cars that contain only a man and only a woman from the total cars. M + B = 20 (as 20 cars contain a man) W + B = 13 (as 13 cars contain a woman) Solving the above two equations simultaneously, we get: M = 12, W = 5, B = 8 Therefore, 8 cars contain both a man and a woman. Hence, the correct answer is 8. Choice A, B, and D are incorrect as they do not reflect the correct calculation based on the information provided.

4. What is the sum of two odd numbers, two even numbers, and an odd number and an even number?

Correct answer: A

Rationale: The sum of two odd numbers is even because odd numbers have a difference of 1 and adding them results in a multiple of 2. The sum of two even numbers is even because even numbers are multiples of 2. When an odd number and an even number are added, the result is odd because the even number contributes an extra 1 to the sum, making it an odd number. Therefore, the correct answer is A. Choices B, C, and D have incorrect combinations of the sum of odd and even numbers.

5. Solve the following equation: 3(2y+50)−4y=500

Correct answer: B

Rationale: To solve the equation 3(2y+50)−4y=500, first distribute to get 6y+150−4y=500. Combining like terms results in 2𝑦 + 150 = 500. By subtracting 150 from both sides, we get 2y = 350. Dividing by 2 gives y = 175. Therefore, the correct answer is B. Choices A, C, and D are incorrect because they do not correctly follow the steps of distributing, combining like terms, and isolating the variable to solve for y.

Similar Questions

Susan bought a dress for $69.99, shoes for $39.99, and accessories for $34.67. What was the total cost of her outfit?
What is the approximate metric equivalent of 7 inches?
Solve for x: 2x - 7 = 3
Simplify the following expression: 5/9 × 15/36
Three roommates decided to combine their money to buy a birthday gift for the fourth roommate. The first roommate contributed $12.03, the second roommate gave $11.96, and the third roommate donated $12.06. Estimate the total amount of money the roommates used to purchase the gift

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses