a city has a population of 51623 and 95 of the population voted for a new proposition approximately how many people voted
Logo

Nursing Elites

ATI TEAS 7

TEAS Math Questions

1. In a city with a population of 51,623, 9.5% of the population voted for a new proposition. How many people approximately voted?

Correct answer: B

Rationale: To find the number of people who voted, you need to calculate 9.5% of the total population of 51,623. 9.5% of 51,623 is approximately 0.095 x 51,623 = 4,999.85, which is rounded to approximately 5,000 people. Therefore, the correct answer is 5,000 people. Choice A, 3,000 people, is incorrect as it is lower than the calculated value. Choice C, 7,000 people, is incorrect as it is higher than the calculated value. Choice D, 10,000 people, is incorrect as it is much higher than the calculated value.

2. How can you visually differentiate between a histogram and a bar graph?

Correct answer: A

Rationale: The key difference between a histogram and a bar graph is that a bar graph has gaps between the bars, while a histogram does not. This feature helps in visually distinguishing between the two. Choice B is incorrect because both types of graphs can show frequency. Choice C is incorrect as both graphs can be used for comparison. Choice D is incorrect as both types of graphs can have labels for better understanding.

3. As a company's stocks increase, production, sales, and investments also increase. Which of the following is the independent variable?

Correct answer: B

Rationale: The independent variable in this scenario is 'Stocks.' An independent variable is the one that is manipulated or controlled by the experimenter. In this case, stocks are the factor that is changing and influencing the other variables - production, sales, and investments. Production, sales, and investments are dependent on the changes in stocks; hence, they are the dependent variables. While production, sales, and investments may increase as a result of changes in stocks, the stocks themselves are the driving force behind these changes, making them the independent variable.

4. Simplify the expression 3x - 5x + 2.

Correct answer: D

Rationale: When simplifying the expression 3x - 5x + 2, start by combining like terms. -5x is subtracted from 3x to give -2x. Adding 2 at the end gives the simplified expression -2x. Therefore, the correct answer is -2x. Choice A, -2x + 2, incorrectly adds 2 at the end. Choice B, -8x, incorrectly combines the coefficients of x without considering the constant term. Choice C, 2x + 2, incorrectly adds the coefficients of x without simplifying.

5. Which of the following is NOT a way to write 40 percent of N?

Correct answer: B

Rationale: The correct answer is B: N/40. To find 40% of N, you multiply N by 0.4, so 0.4N is the correct representation. Choice B, N/40, is incorrect because dividing N by 40 does not give you 40% of N. Choice C, 2/5 N, is equivalent to 40% of N since 2/5 is the same as 40% when simplified. Choice D, 40N/100, is also correct since 40% can be represented as 40/100, which simplifies to 0.4, making 40N/100 another valid way to write 40% of N.

Similar Questions

Which of the following numbers has the greatest value?
On a floor plan drawn at a scale of 1:100, the area of a rectangular room is 30 cm². What is the actual area of the room?
Joshua is taking a test with 30 questions. To qualify for an academic scholarship, he needs to answer at least 80% of the questions correctly. What is the minimum number of questions Joshua must answer correctly to qualify for the scholarship?
During week 1, Nurse Cameron works 5 shifts. During week 2, she worked twice as many shifts as she did in week 1. In week 3, she added 4 shifts to the number of shifts worked in week 2. Which equation describes the number of shifts Nurse Cameron worked in week 3?
Which of the following describes a real-world situation that could be modeled by?

Access More Features

ATI TEAS Premium Plus
$150/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses