ATI TEAS 7
TEAS Math Questions
1. In a city with a population of 51,623, 9.5% of the population voted for a new proposition. How many people approximately voted?
- A. 3,000 people
- B. 5,000 people
- C. 7,000 people
- D. 10,000 people
Correct answer: B
Rationale: To find the number of people who voted, you need to calculate 9.5% of the total population of 51,623. 9.5% of 51,623 is approximately 0.095 x 51,623 = 4,999.85, which is rounded to approximately 5,000 people. Therefore, the correct answer is 5,000 people. Choice A, 3,000 people, is incorrect as it is lower than the calculated value. Choice C, 7,000 people, is incorrect as it is higher than the calculated value. Choice D, 10,000 people, is incorrect as it is much higher than the calculated value.
2. What defines an integer?
- A. A whole number (not a fraction or decimal!) that can be positive, negative, or zero
- B. A number with a decimal point
- C. A fraction
- D. A percentage
Correct answer: A
Rationale: An integer is a whole number that can be positive, negative, or zero. It does not include fractions or decimals. Choice B, 'A number with a decimal point,' is incorrect because integers do not have decimal points. Choice C, 'A fraction,' is incorrect because integers are not expressed as ratios of two integers. Choice D, 'A percentage,' is incorrect because integers are not necessarily related to proportions out of 100.
3. Which of the following statements is true?
- A. The mean is less than the median
- B. The mode is greater than the median
- C. The mode is less than the mean, median, and range
- D. The mode is equal to the range
Correct answer: A
Rationale: The mean is the average of a set of numbers, while the median is the middle value when the numbers are arranged in order. If a set of numbers is skewed to one side with some outliers, the mean can be influenced by these extreme values, causing it to be greater or less than the median. In cases of skewed distribution, the mean typically shifts towards the direction of the outliers, making it less than the median. Choice B is incorrect because the mode, which is the most frequent number in a dataset, may or may not be greater than the median. Choice C is incorrect because the mode can be greater than the mean or median, depending on the data. Choice D is incorrect because the mode, representing the most frequent value, has no direct relationship with the range, which is the difference between the highest and lowest values in a dataset.
4. In the town of Ellsford, there are approximately 1,450 residents who attend church weekly. If around 400 of them attend Catholic Churches, what percentage of churchgoers in Ellsford attends Catholic Churches?
- A. 23%
- B. 28%
- C. 36%
- D. 42%
Correct answer: B
Rationale: To find the percentage of churchgoers who attend Catholic Churches, divide the number of Catholic churchgoers by the total number of churchgoers and then multiply by 100. (400 ÷ 1,450) × 100 ≈ 27.59%, which rounds to 28%.
5. When the weights of the newborn babies are graphed, the distribution of weights is symmetric with the majority of weights centered around a single peak. Which of the following describes the shape of this distribution?
- A. Uniform
- B. Bimodal
- C. Bell-shaped
- D. Skewed right
Correct answer: C
Rationale: The correct answer is C: Bell-shaped. A symmetric distribution with a single peak is characteristic of a bell-shaped distribution, also known as a normal distribution. This distribution forms a symmetrical, bell-like curve when graphed. Choice A, 'Uniform,' would describe a distribution where all values have equal probability. Choice B, 'Bimodal,' would indicate a distribution with two distinct peaks. Choice D, 'Skewed right,' suggests a distribution where the tail on the right side is longer or more pronounced, unlike the symmetrical bell-shaped distribution described in the question.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$49/ 30 days
- 3,000 Questions with answers
- 30 days access