ATI TEAS 7
TEAS Math Practice Test
1. How is the number -4 classified?
- A. Real, rational, integer, whole, natural
- B. Real, rational, integer, natural
- C. Real, rational, integer
- D. Real, irrational
Correct answer: C
Rationale: The number -4 is classified as a real number because it exists on the number line. It is also a rational number since it can be expressed as -4/1. Additionally, -4 is an integer because it is a whole number that can be positive, negative, or zero. However, -4 is not a whole number because whole numbers are non-negative integers starting from zero. Similarly, -4 is not a natural number since natural numbers are positive integers starting from one. Therefore, the correct classification for the number -4 is real, rational, and integer, making option C the correct answer.
2. Tom needs to buy ink cartridges and printer paper. Each ink cartridge costs $30. Each ream of paper costs $5. He has $100 to spend. Which of the following inequalities may be used to find the combinations of ink cartridges and printer paper he may purchase?
- A. 30c + 5p ≤ 100
- B. 30c + 5p = 100
- C. 30c + 5p > 100
- D. 30c + 5p < 100
Correct answer: A
Rationale: The correct inequality is 30c + 5p ≤ 100. This represents the combinations of ink cartridges (c) and printer paper (p) that Tom may purchase, ensuring the total cost is less than or equal to $100. Choice B is incorrect because the total cost should be less than or equal to $100, not equal to. Choices C and D are also incorrect as they indicate the total cost being greater than $100, which is not the case given Tom's budget limit.
3. The total perimeter of a rectangle is 36 cm. If the length of each side is 12 cm, what is the width?
- A. 3 cm
- B. 12 cm
- C. 6 cm
- D. 8 cm
Correct answer: C
Rationale: The formula for the perimeter of a rectangle is P = 2(l + w), where P is the perimeter, l is the length, and w is the width. Given that the total perimeter is 36 cm and each side's length is 12 cm, we substitute the values into the formula: 36 = 2(12 + w). Solving for w gives us w = 6. Therefore, the width of the rectangle is 6 cm. Choice A (3 cm) is incorrect because the width is not half of the length. Choice B (12 cm) is the length, not the width. Choice D (8 cm) is incorrect as it does not match the calculated width of 6 cm.
4. A car travels 60 miles in 1 hour. How long will it take to travel 180 miles at the same speed?
- A. 3 hours
- B. 4 hours
- C. 2.5 hours
- D. 5 hours
Correct answer: A
Rationale: To find the time needed to travel 180 miles at the same speed of 60 miles per hour, you divide the total distance by the speed. 180 miles ÷ 60 mph = 3 hours. Therefore, it will take 3 hours to travel 180 miles at the given speed. Choice B, 4 hours, is incorrect as it does not align with the calculation. Choice C, 2.5 hours, is incorrect as it underestimates the time needed for the distance. Choice D, 5 hours, is incorrect as it overestimates the time required based on the given speed.
5. Half of a circular garden with a radius of 11.5 feet needs weeding. Find the area in square feet that needs weeding. Round to the nearest hundredth. Use 3.14 for π.
- A. 2.4
- B. 207.64
- C. 15.1
- D. 30.1
Correct answer: B
Rationale: The formula for the area of a full circle is calculated as Area = π × (radius²). When finding the area of half a circle, we multiply by 0.5. Thus, the formula becomes Area = 0.5 × π × (radius²). Given that the radius of the circular garden is 11.5 feet, the calculation using π = 3.14 is as follows: Area = 0.5 × 3.14 × (11.5²) = 0.5 × 3.14 × 132.25 = 0.5 × 415.27 = 207.64 square feet. Therefore, the correct answer is B. Choices A, C, and D are incorrect because they do not reflect the correct calculation for finding the area of half a circular garden with a radius of 11.5 feet.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access