ATI TEAS 7
ATI TEAS Math Practice Test
1. The cost of renting a bicycle is $3.60 per hour. Which equation shows the best relationship between the total cost (C) and the number of hours (h) rented?
- A. C = 3.60h
- B. C = h + 3.60
- C. C = 3.60h + 10.80
- D. C = 10.80h
Correct answer: A
Rationale: The best relationship is C = 3.60h because the cost increases by $3.60 for each hour of rental. This equation represents a linear relationship where the total cost (C) is directly proportional to the number of hours rented (h). Choice B (C = h + 3.60) is incorrect because it wrongly assumes a fixed additional cost of $3.60 regardless of the number of hours rented. Choice C (C = 3.60h + 10.80) is incorrect as it overestimates the initial cost. Choice D (C = 10.80h) is incorrect as it implies a constant rate of $10.80 per hour, which is not the case.
2. Tom needs to buy ink cartridges and printer paper. Each ink cartridge costs $30. Each ream of paper costs $5. He has $100 to spend. Which of the following inequalities may be used to find the combinations of ink cartridges and printer paper he may purchase?
- A. 30c + 5p ≤ 100
- B. 30c + 5p = 100
- C. 30c + 5p > 100
- D. 30c + 5p < 100
Correct answer: A
Rationale: The correct inequality is 30c + 5p ≤ 100. This represents the combinations of ink cartridges (c) and printer paper (p) that Tom may purchase, ensuring the total cost is less than or equal to $100. Choice B is incorrect because the total cost should be less than or equal to $100, not equal to. Choices C and D are also incorrect as they indicate the total cost being greater than $100, which is not the case given Tom's budget limit.
3. A triangle has dimensions of 9 cm, 4 cm, and 7 cm. The triangle is reduced by a scale factor of x. Which of the following represents the dimensions of the dilated triangle?
- A. 8.25 cm, 3.25 cm, 6.25 cm
- B. 4.5 cm, 2 cm, 3.5 cm
- C. 6.75 cm, 3 cm, 5.25 cm
- D. 4.95 cm, 2.2 cm, 3.85 cm
Correct answer: C
Rationale: When reducing a figure by a scale factor, each dimension is multiplied by the same scale factor. In this case, the scale factor is not provided in the question. To find the scale factor, you would divide the new lengths of the sides by the original lengths. The scaled-down triangle's dimensions are the original dimensions multiplied by the scale factor. By performing the calculations, the dimensions of the dilated triangle are 6.75 cm, 3 cm, and 5.25 cm, which matches choice C. Choices A, B, and D have incorrect dimensions as they do not result from the correct application of the scale factor to the original triangle's dimensions.
4. Five of six numbers have a sum of 25. The average of all six numbers is 6. What is the sixth number?
- A. 8
- B. 10
- C. 11
- D. 12
Correct answer: C
Rationale: To find the sum of all six numbers, we multiply the average (6) by the total numbers (6), which equals 36. Since the sum of five numbers is 25, the sixth number can be found by subtracting the sum of five numbers from the total sum: 36 - 25 = 11. Therefore, the sixth number is 11. Choice A, 8, is incorrect because adding 8 to the sum of five numbers (25) would result in a total greater than the correct sum of all six numbers (36). Choice B, 10, is incorrect because adding 10 to the sum of five numbers (25) would also result in a total greater than the correct sum of all six numbers (36). Choice D, 12, is incorrect because adding 12 to the sum of five numbers (25) would exceed the correct sum of all six numbers (36).
5. Dr. Lee observed that 30% of all his patients developed an infection after taking a certain antibiotic. He further noticed that 5% of those 30% required hospitalization to recover from the infection. What percentage of Dr. Lee's patients were hospitalized after taking the antibiotic?
- A. 1.50%
- B. 5%
- C. 15%
- D. 30%
Correct answer: C
Rationale: Out of all the patients who took the antibiotic, 30% developed an infection. Among those with infections, 5% required hospitalization. To find the percentage of all patients hospitalized, we multiply the two percentages: 30% * 5% = 1.5%. Therefore, 1.5% of all patients were hospitalized. Choice A (1.50%) is the calculated percentage of all patients hospitalized, not 1.50%. Choice B (5%) is the percentage of patients who developed an infection and required hospitalization, not all patients. Choice D (30%) represents the initial percentage of patients who developed an infection, not the percentage hospitalized.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access