ATI TEAS 7
ATI TEAS Math Practice Test
1. A charter bus driver drove at an average speed of 65 mph for 305 miles. If he stops at a gas station for 15 minutes, then drives another 162 miles at an average speed of 80 mph, how long will it have been since he began the trip?
- A. 0.96 hours
- B. 6.44 hours
- C. 6.69 hours
- D. 6.97 hours
Correct answer: D
Rationale: To find the total time, we first calculate the time taken for the first leg of the trip by dividing the distance of 305 miles by the speed of 65 mph, which equals 4.69 hours. After that, we add the 15 minutes spent at the gas station, which is 0.25 hours. Next, we calculate the time taken for the second leg of the trip by dividing the distance of 162 miles by the speed of 80 mph, which equals 2.03 hours. Adding these times together (4.69 hours + 0.25 hours + 2.03 hours) gives us a total time of 6.97 hours. Therefore, it will have been 6.97 hours since the driver began the trip. Choice A is incorrect as it does not account for the time spent driving the second leg of the trip. Choice B is incorrect as it only considers the time for the first leg of the trip and the time spent at the gas station. Choice C is incorrect as it misses the time taken for the second leg of the trip.
2. What number is equivalent to -3 + 2 * 8 + 3?
- A. 11
- B. 31
- C. 28
- D. 80
Correct answer: B
Rationale: To solve this expression, we first follow the order of operations (PEMDAS/BODMAS). According to this rule, we start by multiplying 2 by 8, which equals 16. Then, we add -3 and 3 to get 0. Finally, adding 0 to 16 gives us the correct answer of 16. The correct answer is B. Choice A (11) results from adding all the numbers without considering the multiplication first. Choice C (28) is the result of adding all the numbers without considering any operations. Choice D (80) is incorrect as it does not correctly follow the order of operations.
3. Half of a circular garden with a radius of 11.5 feet needs weeding. Find the area in square feet that needs weeding. Round to the nearest hundredth. Use 3.14 for π.
- A. 2.4
- B. 207.64
- C. 15.1
- D. 30.1
Correct answer: B
Rationale: The formula for the area of a full circle is calculated as Area = π × (radius²). When finding the area of half a circle, we multiply by 0.5. Thus, the formula becomes Area = 0.5 × π × (radius²). Given that the radius of the circular garden is 11.5 feet, the calculation using π = 3.14 is as follows: Area = 0.5 × 3.14 × (11.5²) = 0.5 × 3.14 × 132.25 = 0.5 × 415.27 = 207.64 square feet. Therefore, the correct answer is B. Choices A, C, and D are incorrect because they do not reflect the correct calculation for finding the area of half a circular garden with a radius of 11.5 feet.
4. Evaluate the expression -3 x 5.
- A. -15
- B. -2
- C. 2
- D. 15
Correct answer: A
Rationale: The correct answer is A, which is -15. When you multiply -3 by 5, you get -15. The negative sign in front of the 3 indicates a negative value, and when multiplied by a positive number like 5, the result remains negative. Choices B, C, and D are incorrect because they do not reflect the correct multiplication of -3 and 5.
5. Joshua is taking a test with 30 questions. To qualify for an academic scholarship, he needs to answer at least 80% of the questions correctly. What is the minimum number of questions Joshua must answer correctly to qualify for the scholarship?
- A. 23
- B. 24
- C. 26
- D. 27
Correct answer: B
Rationale: To qualify for an academic scholarship, Joshua needs to answer at least 80% of the 30 test questions correctly. 80% of 30 is 24, so Joshua must answer at least 24 questions correctly to qualify for the scholarship. Choice A (23) is incorrect as it is below the minimum required percentage. Choices C (26) and D (27) are also incorrect as they exceed the minimum number of questions Joshua needs to answer correctly for the scholarship.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access