ATI TEAS 7
ATI TEAS Math Practice Test
1. A charter bus driver drove at an average speed of 65 mph for 305 miles. If he stops at a gas station for 15 minutes, then drives another 162 miles at an average speed of 80 mph, how long will it have been since he began the trip?
- A. 0.96 hours
- B. 6.44 hours
- C. 6.69 hours
- D. 6.97 hours
Correct answer: D
Rationale: To find the total time, we first calculate the time taken for the first leg of the trip by dividing the distance of 305 miles by the speed of 65 mph, which equals 4.69 hours. After that, we add the 15 minutes spent at the gas station, which is 0.25 hours. Next, we calculate the time taken for the second leg of the trip by dividing the distance of 162 miles by the speed of 80 mph, which equals 2.03 hours. Adding these times together (4.69 hours + 0.25 hours + 2.03 hours) gives us a total time of 6.97 hours. Therefore, it will have been 6.97 hours since the driver began the trip. Choice A is incorrect as it does not account for the time spent driving the second leg of the trip. Choice B is incorrect as it only considers the time for the first leg of the trip and the time spent at the gas station. Choice C is incorrect as it misses the time taken for the second leg of the trip.
2. Adam is painting the outside of a 4-walled shed. The shed is 5 feet wide, 4 feet deep, and 7 feet high. Which of the following is the amount of paint Adam will need for the four walls?
- A. 80 ft²
- B. 126 ft²
- C. 140 ft²
- D. 560 ft²
Correct answer: B
Rationale: To find the amount of paint needed for the four walls of the shed, calculate the total area of the four walls. The shed has two pairs of identical walls. The area of one pair of walls is 5 feet (width) x 7 feet (height) + 4 feet (depth) x 7 feet (height) = 35 ft² + 28 ft² = 63 ft². Since there are two pairs of walls, the total area for the four walls is 2 x 63 ft² = 126 ft². Therefore, Adam will need 126 ft² of paint for the four walls. Choice A, 80 ft², is incorrect as it does not account for the total surface area of all four walls. Choice C, 140 ft², is incorrect as it overestimates the area required. Choice D, 560 ft², is incorrect as it significantly overestimates the amount of paint needed for the shed.
3. What number is 6 equal to 30% of?
- A. 18
- B. 20
- C. 24
- D. 26
Correct answer: A
Rationale: To find the number that is 30% of 6, you can set up the equation 0.3x = 6. Solving for x gives x = 6 / 0.3 = 20. Therefore, 6 is equal to 30% of 20. Choice B, 20, is incorrect as it is the result of the calculation. Choice C, 24, and Choice D, 26, are incorrect as they are not the numbers that 6 is equal to 30% of.
4. University X requires some of its nursing students to take an exam before being admitted into the nursing program. In this year's class, half of the nursing students were required to take the exam, and three-fifths of those who took the exam passed. If this year's class has 200 students, how many students passed the exam?
- A. 120
- B. 100
- C. 60
- D. 50
Correct answer: C
Rationale: If the incoming class has 200 students, then half of those students were required to take the exam. (200)(1/2) = 100. So 100 students took the exam, but only three-fifths of that 100 passed the exam. (100)(3/5) = 60. Therefore, 60 students passed the exam. The correct answer is 60. Choice A is incorrect as it miscalculates the number of students who passed the exam. Choice B is incorrect as it does not consider the passing rate of the exam. Choice D is incorrect as it is much lower than the correct answer.
5. Lauren must travel a distance of 1,480 miles to get to her destination. She plans to drive approximately the same number of miles per day for 5 days. Which of the following is a reasonable estimate of the number of miles she will drive per day?
- A. 240 miles
- B. 260 miles
- C. 300 miles
- D. 340 miles
Correct answer: C
Rationale: To estimate the number of miles Lauren will drive per day, the total distance can be rounded to 1,500 miles. Divide this by the number of days she plans to drive, which is 5. 1,500 miles / 5 days = 300 miles per day. Therefore, a reasonable estimate for the number of miles she will drive per day is 300. Choice A (240 miles) is too low, Choice B (260 miles) is slightly low, and Choice D (340 miles) is too high when considering the total distance and the number of days Lauren plans to drive.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access