ATI TEAS 7
ATI TEAS Math Practice Test
1. A charter bus driver drove at an average speed of 65 mph for 305 miles. If he stops at a gas station for 15 minutes, then drives another 162 miles at an average speed of 80 mph, how long will it have been since he began the trip?
- A. 0.96 hours
- B. 6.44 hours
- C. 6.69 hours
- D. 6.97 hours
Correct answer: D
Rationale: To find the total time, we first calculate the time taken for the first leg of the trip by dividing the distance of 305 miles by the speed of 65 mph, which equals 4.69 hours. After that, we add the 15 minutes spent at the gas station, which is 0.25 hours. Next, we calculate the time taken for the second leg of the trip by dividing the distance of 162 miles by the speed of 80 mph, which equals 2.03 hours. Adding these times together (4.69 hours + 0.25 hours + 2.03 hours) gives us a total time of 6.97 hours. Therefore, it will have been 6.97 hours since the driver began the trip. Choice A is incorrect as it does not account for the time spent driving the second leg of the trip. Choice B is incorrect as it only considers the time for the first leg of the trip and the time spent at the gas station. Choice C is incorrect as it misses the time taken for the second leg of the trip.
2. Half of a circular garden with a radius of 11.5 feet needs weeding. Find the area in square feet that needs weeding. Round to the nearest hundredth. Use 3.14 for π.
- A. 2.4
- B. 207.64
- C. 15.1
- D. 30.1
Correct answer: B
Rationale: The formula for the area of a full circle is calculated as Area = π × (radius²). When finding the area of half a circle, we multiply by 0.5. Thus, the formula becomes Area = 0.5 × π × (radius²). Given that the radius of the circular garden is 11.5 feet, the calculation using π = 3.14 is as follows: Area = 0.5 × 3.14 × (11.5²) = 0.5 × 3.14 × 132.25 = 0.5 × 415.27 = 207.64 square feet. Therefore, the correct answer is B. Choices A, C, and D are incorrect because they do not reflect the correct calculation for finding the area of half a circular garden with a radius of 11.5 feet.
3. A sweater that normally sells for $78 is marked 15% off. Which of the following estimates the sale price of the sweater?
- A. $12
- B. $66
- C. $22
- D. $69
Correct answer: B
Rationale: To find the sale price after a 15% discount, you calculate 15% of $78, which is $11.70. Subtracting $11.70 from the original price gives $66.30. Since the price is typically rounded, the estimated sale price is $66. Choice A, $12, is too low and does not reflect a 15% discount off $78. Choice C, $22, and choice D, $69, are also incorrect as they do not accurately estimate the sale price after a 15% discount.
4. If Mom's car drove 72 miles in 90 minutes, how fast did she drive in feet per second?
- A. 0.8 feet per second
- B. 48.9 feet per second
- C. 0.009 feet per second
- D. 70.4 feet per second
Correct answer: D
Rationale: To convert miles per hour to feet per second, first convert time to hours: 90 minutes = 1.5 hours. Then, calculate the speed in miles per hour: 72 miles in 1.5 hours = 48 mph. Finally, convert mph to feet per second using the conversion factor 1 mph = 1.47 feet per second: 48 mph * 1.47 = 70.4 feet per second. Therefore, the correct answer is 70.4 feet per second. Choices A, B, and C are incorrect because they do not reflect the correct conversion from miles per hour to feet per second.
5. Express as an improper fraction: 8 3/7
- A. 11/7
- B. 21/8
- C. 5/3
- D. 59/7
Correct answer: D
Rationale: To convert the mixed number 8 3/7 to an improper fraction, multiply the whole number (8) by the denominator (7) and add the numerator (3) to get the numerator of the improper fraction. This gives us (8*7 + 3) / 7 = 59/7. Therefore, the correct answer is 59/7. Choice A (11/7), choice B (21/8), and choice C (5/3) are incorrect because they do not correctly convert the mixed number to an improper fraction.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access