a charter bus driver drove at an average speed of 65 mph for 305 miles if he stops at a gas station for 15 minutes then drives another 162 miles at an
Logo

Nursing Elites

ATI TEAS 7

ATI TEAS Math Practice Test

1. A charter bus driver drove at an average speed of 65 mph for 305 miles. If he stops at a gas station for 15 minutes, then drives another 162 miles at an average speed of 80 mph, how long will it have been since he began the trip?

Correct answer: D

Rationale: To find the total time, we first calculate the time taken for the first leg of the trip by dividing the distance of 305 miles by the speed of 65 mph, which equals 4.69 hours. After that, we add the 15 minutes spent at the gas station, which is 0.25 hours. Next, we calculate the time taken for the second leg of the trip by dividing the distance of 162 miles by the speed of 80 mph, which equals 2.03 hours. Adding these times together (4.69 hours + 0.25 hours + 2.03 hours) gives us a total time of 6.97 hours. Therefore, it will have been 6.97 hours since the driver began the trip. Choice A is incorrect as it does not account for the time spent driving the second leg of the trip. Choice B is incorrect as it only considers the time for the first leg of the trip and the time spent at the gas station. Choice C is incorrect as it misses the time taken for the second leg of the trip.

2. What is the approximate metric equivalent of 7 inches?

Correct answer: D

Rationale: The correct answer is D: 17.8 cm. To convert inches to centimeters, you can use the conversion factor 1 inch = 2.54 cm. Therefore, 7 inches is equal to 7 * 2.54 = 17.78 cm, which rounds to 17.8 cm. Choices A, B, and C are incorrect because they do not correspond to the correct conversion of 7 inches to centimeters.

3. In a study measuring the average hours worked per week by different types of hospital staff (such as nurses and physicians), what are the dependent and independent variables?

Correct answer: D

Rationale: In this study, the dependent variable is the 'Average hours worked per week,' as it relies on the different types of 'Hospital Staff' (the independent variable). The amount of time worked per week varies based on the category of staff being considered. Therefore, the correct choice is D. Choices A and B incorrectly assign the dependent and independent variables to specific staff categories (Nurses and Physicians), which are actually different elements within the study. Choice C incorrectly defines the dependent variable as 'Hospital Staff,' when in fact, it is the 'Average hours worked per week' that is dependent on the type of staff.

4. If 9.5% of a town's population of 51,623 people voted for a proposition, approximately how many people voted for the proposition?

Correct answer: B

Rationale: To find the approximate number of people who voted for the proposition, multiply the town's population by the percentage that voted: 51,623 * 9.5% = 51,623 * 0.095 ≈ 4,904. Therefore, approximately 5,000 people voted for the proposition. Choice A (3000), C (7000), and D (10000) are incorrect because they do not accurately represent 9.5% of the town's population.

5. Between the years 2000 and 2010, the number of births in the town of Daneville increased from 1432 to 2219. What is the approximate percent increase in the number of births?

Correct answer: A

Rationale: To calculate the percent increase, subtract the initial value from the final value, which gives 2219 - 1432 = 787. Then, divide the increase (787) by the initial value (1432) and multiply by 100 to get the percentage: (787/1432) * 100 = 55%. Therefore, the approximate percent increase in the number of births is 55%. Choice B, 36%, is incorrect because it does not match the calculated increase. Choice C, 64%, is incorrect as it is higher than the actual percentage. Choice D, 42%, is incorrect as it is lower than the actual percentage.

Similar Questions

What is the GCF (greatest common factor)?
Five of six numbers have a sum of 25. The average of all six numbers is 6. What is the sixth number?
Solve for x: 3(x - 1) = 2(3x - 9)
During week 1, Nurse Cameron works 5 shifts. During week 2, she worked twice as many shifts as she did in week 1. In week 3, she added 4 shifts to the number of shifts worked in week 2. Which equation describes the number of shifts Nurse Cameron worked in week 3?
Solve the system of equations. Equation 1: 2x + y = 0 Equation 2: x - 2y = 8

Access More Features

ATI TEAS Premium Plus
$150/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses