ATI TEAS 7
TEAS Test Math Prep
1. You measure the width of your door to be 36 inches. The true width of the door is 75 inches. What is the relative error in your measurement?
- A. 0.52%
- B. 0.01%
- C. 0.99%
- D. 0.10%
Correct answer: A
Rationale: The relative error is calculated using the formula: (|Measured Value - True Value| / True Value) * 100%. Substituting the values given, we have (|36 - 75| / 75) * 100% = (39 / 75) * 100% ≈ 0.52 * 100% = 0.52%. Therefore, the relative error in measurement is approximately 0.52%. Choice A is correct because it reflects this calculation. Choice B is incorrect as it represents a lower relative error than the actual value obtained. Choice C is incorrect as it overestimates the relative error. Choice D is incorrect as it underestimates the relative error.
2. Margery plans a vacation with costs for airfare, hotel (5 nights), sightseeing, and meals. If she receives a 10% discount on additional hotel nights, what will she spend?
- A. 1328.35
- B. 1373.5
- C. 1381.4
- D. 1417.6
Correct answer: A
Rationale: To calculate Margery's total cost, we first need to find the cost without the discount. Let's say the original cost is x. With a 10% discount, she saves 10% of the cost of additional hotel nights. Since she is staying for 5 nights, the discount applies to 4 additional nights (5 - 1 night already included). Therefore, she saves 10% of 4 nights' cost. If x is the cost of 1 night, the total cost without discount is 5x. With the 10% discount, she saves 0.1 * 4x = 0.4x. So, the cost after discount is 5x - 0.4x = 4.6x. Given that the total cost is 5x for 5 nights, we can equate 5x to 4.6x to find x. Solving for x, we get x = Total cost / 5 = 5x / 5 = 4.6x / 5. Therefore, x = 4.6x / 5, which simplifies to x = 0.92 * 5x. This means 1 night's cost is 0.92 times the total cost for 5 nights. Given the total cost is $1328.35, we find the cost for 1 night is $1328.35 / 5 = $265.67. So, Margery will spend $1328.35 for her vacation.
3. If (D) is the distance traveled and (R) is the rate of travel, which of the following represents the relationship between D and R for the equation D=2R?
- A. D is twice as much as R
- B. R is twice as much as D
- C. R is two times D
- D. D is two more than R
Correct answer: A
Rationale: The equation D=2R means that D equals 2 times R, which translates to D being twice the value of R. Therefore, choice A, 'D is twice as much as R,' is the correct representation of the relationship between D and R. Choice B, 'R is twice as much as D,' incorrectly reverses the roles of D and R. Choice C, 'R is two times D,' incorrectly states the relationship between R and D. Choice D, 'D is two more than R,' does not accurately reflect the relationship presented in the equation.
4. A gumball machine contains red, orange, yellow, green, and blue gumballs. Twenty percent of the gumballs are red, 30% are orange, 5% are yellow, 10% are green, and the rest are blue. If there are a total of 120 gumballs, how many more blue gumballs are there than yellow gumballs?
- A. 48
- B. 30
- C. 42
- D. 36
Correct answer: D
Rationale: The percentage of blue gumballs is 35% (100% - 20% - 30% - 5% - 10% = 35%). If there are 120 gumballs, 35% of that is 42 blue gumballs. Since 5% are yellow gumballs, which is 6 gumballs, the difference between 42 blue gumballs and 6 yellow gumballs is 36 more blue gumballs. Therefore, the correct answer is 36. Choice A (48) is incorrect as it miscalculates the difference. Choice B (30) is incorrect as it does not consider the correct percentage of blue gumballs. Choice C (42) is incorrect as it miscalculates the difference between blue and yellow gumballs.
5. Which statement about the following set is true? {60, 5, 18, 20, 37, 37, 11, 90, 72}
- A. The median and the mean are equal.
- B. The mean is less than the mode.
- C. The mode is greater than the median.
- D. The median is less than the mean.
Correct answer: D
Rationale: To find the median, we first need to arrange the set in ascending order: {5, 11, 18, 20, 37, 37, 60, 72, 90}. The median is the middle value, which is 37 in this case. The mean is calculated by adding all numbers and dividing by the total count, which gives a mean greater than 37. Therefore, the statement that the median is less than the mean is correct. Choice A is incorrect because the median and mean are not equal in this set. Choice B is incorrect as the mean is greater than the mode in this set. Choice C is incorrect as the mode is 37, which is equal to the median, not greater.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access