ATI TEAS 7
TEAS Test Math Prep
1. You measure the width of your door to be 36 inches. The true width of the door is 75 inches. What is the relative error in your measurement?
- A. 0.52%
- B. 0.01%
- C. 0.99%
- D. 0.10%
Correct answer: A
Rationale: The relative error is calculated using the formula: (|Measured Value - True Value| / True Value) * 100%. Substituting the values given, we have (|36 - 75| / 75) * 100% = (39 / 75) * 100% ≈ 0.52 * 100% = 0.52%. Therefore, the relative error in measurement is approximately 0.52%. Choice A is correct because it reflects this calculation. Choice B is incorrect as it represents a lower relative error than the actual value obtained. Choice C is incorrect as it overestimates the relative error. Choice D is incorrect as it underestimates the relative error.
2. A car dealership’s commercials claim that this year’s models are 20% off the list price, plus they will pay the first 3 monthly payments. If a car is listed for $26,580, and the monthly payments are set at $250, what is the total potential savings?
- A. $1,282
- B. $5,566
- C. $6,066
- D. $20,514
Correct answer: C
Rationale: To calculate the total potential savings: First, find the 20% discount on the list price of $26,580: 0.20 × $26,580 = $5,316. Then, determine the savings over the first 3 months of payments: 3 months × $250/month = $750. Add the discount and the monthly payment savings to get the total potential savings: $5,316 + $750 = $6,066. Therefore, the correct answer is $6,066. Choice A, $1,282, is incorrect because it does not account for the total savings from both the discount and the monthly payments. Choice B, $5,566, is incorrect as it miscalculates the total savings by excluding the savings from the monthly payments. Choice D, $20,514, is incorrect as it does not consider the discount and only focuses on the list price.
3. The cost of renting a bicycle is $3.60 per hour. Which equation shows the best relationship between the total cost (C) and the number of hours (h) rented?
- A. C = 3.60h
- B. C = h + 3.60
- C. C = 3.60h + 10.80
- D. C = 10.80h
Correct answer: A
Rationale: The best relationship is C = 3.60h because the cost increases by $3.60 for each hour of rental. This equation represents a linear relationship where the total cost (C) is directly proportional to the number of hours rented (h). Choice B (C = h + 3.60) is incorrect because it wrongly assumes a fixed additional cost of $3.60 regardless of the number of hours rented. Choice C (C = 3.60h + 10.80) is incorrect as it overestimates the initial cost. Choice D (C = 10.80h) is incorrect as it implies a constant rate of $10.80 per hour, which is not the case.
4. Evaluate the expression -3 x 5.
- A. -15
- B. -2
- C. 2
- D. 15
Correct answer: A
Rationale: The correct answer is A, which is -15. When you multiply -3 by 5, you get -15. The negative sign in front of the 3 indicates a negative value, and when multiplied by a positive number like 5, the result remains negative. Choices B, C, and D are incorrect because they do not reflect the correct multiplication of -3 and 5.
5. The length of a rectangle is 3 units greater than its width. Which expression correctly represents the perimeter of the rectangle?
- A. 2W + 2(W + 3)
- B. W + W + 3
- C. W(W + 3)
- D. 2W + 2(3W)
Correct answer: A
Rationale: To find the perimeter of a rectangle, you add up all its sides. In this case, the length is 3 units greater than the width, so the length can be expressed as W + 3. The formula for the perimeter of a rectangle is 2W + 2(L), where L represents the length. Substituting W + 3 for L, the correct expression for the perimeter becomes 2W + 2(W + 3), which simplifies to 2W + 2W + 6 or 4W + 6. Choices B, C, and D do not correctly represent the formula for the perimeter of a rectangle. Choice B simply adds the width twice to 3, neglecting the length. Choice C multiplies the width by the sum of the width and 3, which is incorrect. Choice D combines the width and 3 times the width, which is not the correct formula for the perimeter of a rectangle.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access