what kind of data is best shown with a histogram vs a bar graph
Logo

Nursing Elites

ATI TEAS 7

Math Practice TEAS Test

1. When is a histogram preferred over a bar graph?

Correct answer: B

Rationale: Histograms are specifically designed to display the frequency distribution of continuous data, showing the distribution of values over intervals or bins. On the other hand, bar graphs are used to compare different categories or discrete data points. Therefore, the correct answer is B. Choices A, C, and D are incorrect because histograms are not primarily used for comparing categories, percentages, or proportions, but rather for visualizing the distribution of frequencies within data intervals.

2. A can has a radius of 1.5 inches and a height of 3 inches. Which of the following best represents the volume of the can?

Correct answer: C

Rationale: The volume of a cylinder is calculated using the formula V = πr²h, where r is the radius and h is the height. Substituting the given values (r = 1.5 inches, h = 3 inches) into the formula yields V ≈ 21.2 in³. Therefore, the correct answer is C. Choice A, 17.2 in³, is incorrect as it does not correspond to the correct calculation. Choice B, 19.4 in³, is also incorrect and does not match the calculated volume. Choice D, 23.4 in³, is not the correct volume obtained when using the provided dimensions in the formula for the volume of a cylinder.

3. Simplify the following expression: 4 * (2/3) ÷ 1 * (1/6)

Correct answer: C

Rationale: To simplify the expression, first convert the mixed numbers into fractions: 4 * (2/3) ÷ 1 * (1/6). This becomes 4 * 2/3 ÷ 1 * 1/6. Next, perform the multiplication and division from left to right: 8/3 ÷ 1 * 1/6 = 8/3 * 1 * 6 = 8/3 * 6 = 16. Therefore, the correct answer is 4. Choice A (2) is incorrect as it does not represent the final simplified expression. Choice B (3 1/3) is incorrect as it does not match the result of simplifying the expression. Choice D (4 1/2) is incorrect as it does not match the result of simplifying the expression.

4. Simplify the following expression: 5 x 3 ÷ 9 x 4

Correct answer: A

Rationale: To simplify the expression 5 x 3 ÷ 9 x 4, first perform the multiplications and divisions from left to right: 5 x 3 = 15 and 9 x 4 = 36. So, the expression becomes 15 ÷ 36. When dividing fractions, multiply the first fraction by the reciprocal of the second fraction. Hence, 15 ÷ 36 = 15/36. To simplify the fraction further, find the greatest common divisor, which is 3. Divide both the numerator and denominator by 3 to get the final result: 15/36 = 5/12. Therefore, the correct answer is A. Choices B, C, and D are incorrect because they do not represent the correct simplification of the given expression.

5. At the beginning of the day, Xavier has 20 apples. At lunch, he meets his sister Emma and gives her half of his apples. After lunch, he stops by his neighbor Jim's house and gives him 6 of his apples. He then uses 3/4 of his remaining apples to make an apple pie for dessert at dinner. At the end of the day, how many apples does Xavier have left?

Correct answer: D

Rationale: Xavier gives away half of his 20 apples (10), then gives 6 more apples, leaving him with 4 apples. He uses 3/4 of the remaining 4 apples (3) for the pie, leaving him with 1 apple at the end of the day. Therefore, the correct answer is 1. Choices A, B, and C are incorrect because they do not accurately reflect the calculations of apples given away and used for the pie, resulting in the remaining amount of 1 apple.

Similar Questions

How many pints are in a gallon?
How many milliliters are there in 3.2 liters?
Solve the equation 3(2x+5)=11x+5 for x. Which of the following is correct?
Simplify the following expression: 6 + 7 × 3 - 4 × 2
A patient requires a 30% decrease in their medication dosage. Their current dosage is 340 mg. What will their dosage be after the decrease?

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$1/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses