a bucket can hold 2500 ml how many l can the bucket hold
Logo

Nursing Elites

ATI TEAS 7

TEAS Practice Test Math

1. A bucket can hold 2500 mL. How many liters can the bucket hold?

Correct answer: C

Rationale: To convert milliliters (mL) to liters (L), you divide by 1000 since 1000 mL is equivalent to 1 liter. Therefore, 2500 mL is equal to 2.5 liters (2500 mL ÷ 1000 = 2.5 L). Choice A (0.25 L) is incorrect as it represents a conversion error by a factor of 10. Choice B (25 L) is incorrect as it incorrectly multiplies instead of dividing by 1000. Choice D (250 L) is incorrect as it overestimates the conversion by a factor of 100.

2. What is the median of the set of numbers {2, 3, 9, 12, 15}?

Correct answer: B

Rationale: The median represents the middle value in an ordered set of numbers. To find the median, the numbers need to be arranged in ascending order: {2, 3, 9, 12, 15}. Since the set has an odd number of elements, the median will be the middle value, which is 9 in this case. Choice A (3) and Choice D (15) are incorrect as they do not fall in the middle of the ordered set. Choice C (12) is also incorrect as it is not the middle value in this particular set.

3. The graph below represents the amount of rainfall in a particular state by month. What is the total rainfall for the months May, June, and July?

Correct answer: A

Rationale: To calculate the total rainfall for May, June, and July, we add the rainfall amounts for each month: 3.2 inches (May) + 2.5 inches (June) + 3.3 inches (July) = 9.0 inches. Therefore, the correct answer is A. Choice B (8.4 inches) is incorrect as it does not account for the correct sum of rainfall for the specified months. Choice C (7.5 inches) is incorrect as it does not include the accurate total rainfall for May, June, and July. Choice D (10.5 inches) is incorrect as it provides a total that exceeds the actual combined rainfall for the given months.

4. Jonathan pays a $65 monthly flat rate for his cell phone. He is charged $0.12 per minute for each minute used in a roaming area. Which of the following expressions represents his monthly bill for x roaming minutes?

Correct answer: A

Rationale: The correct expression for Jonathan's monthly bill is 65 + 0.12x, where x represents the number of roaming minutes. The $65 monthly flat rate is added to the product of $0.12 per minute and the number of roaming minutes (x). Choice B is incorrect because it incorrectly multiplies the flat rate by x and adds the per-minute charge. Choice C is incorrect as it combines the flat rate and the per-minute charge into a single value. Choice D is incorrect as it incorrectly multiplies the flat rate by x and adds the per-minute charge separately.

5. Jacob has $100. She spends 87% of the money. She then invests the remaining amount and earns a profit of 75%. How much money does she now have?

Correct answer: C

Rationale: Jacob spends 87% of $100, which is $87, leaving her with $13. When she invests the remaining $13 and earns a 75% profit, she gains an additional $9.75. Thus, the total amount she now has is $13 (remaining amount) + $9.75 (profit) = $22.75. Choice A is incorrect as it reflects the remaining amount before investing and earning a profit. Choice B is incorrect as it does not account for the profit earned from the investment. Choice D is incorrect as it only considers the profit amount, not the total sum.

Similar Questions

What is the mathematical expression for 'Twelve less than thrice a number'?
Which unit of measurement is larger, inches or centimeters?
A patient requires a 30% increase in the dosage of their medication. Their current dosage is 270 mg. What will their dosage be after the increase?
The total perimeter of a rectangle is 36 cm. If the length of each side is 12 cm, what is the width?
How many cubic inches of water could the aquarium hold if it were filled completely? (Dimensions: 30 in × 10 in × 12 in)

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$1/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses