what is a direct proportion what is an inverse proportion
Logo

Nursing Elites

ATI TEAS 7

Math Practice TEAS Test

1. What is a direct proportion? What is an inverse proportion?

Correct answer: A

Rationale: In a direct proportion, both quantities increase or decrease together. This means that as one quantity goes up, the other also goes up, and vice versa. On the other hand, in an inverse proportion, when one quantity increases, the other decreases by the same factor. Therefore, choice A is correct as it accurately defines direct and inverse proportions. Choices B, C, and D are incorrect because they do not accurately describe the relationship between quantities in direct and inverse proportions.

2. What percentage of rainfall received during this timeframe is received during the month of October?

Correct answer: D

Rationale: To determine the percentage of rainfall received during the month of October, we must first calculate the total rainfall for October and the total rainfall for the entire timeframe. Given that the total rainfall for October is 18.9 inches and the total rainfall from January to November is 106.3 inches, we can proceed with the calculation. The percentage is calculated as (18.9/106.3) x 100 = 17.7%. Therefore, the correct answer is D, 17.7%. Choice A (13.50%), Choice B (15.10%), and Choice C (16.90%) are incorrect as they do not align with the accurate calculation based on the provided data.

3. What is the domain for the function y = 1/x?

Correct answer: A

Rationale: The domain of a function consists of all possible input values that produce a valid output. In the case of y = 1/x, the function is undefined when x = 0 because division by zero is not defined in mathematics. Therefore, the correct domain for y = 1/x is all real numbers except 0 (Choice A). Choice B, x > 0, is incorrect because it excludes the value x = 0. Choice C, x = 0, is also incorrect as x = 0 is not a valid part of the domain due to the function being undefined at this point. Choice D, x = 1, is unrelated to the domain of the function and does not represent the set of valid input values for y = 1/x.

4. Which of the following expressions represents the sum of three times a number and eight times a different number?

Correct answer: A

Rationale: The correct expression for the sum of three times a number and eight times a different number is given by 3x + 8y. This represents adding three times the variable x (3x) to eight times the variable y (8y). Choice B (8x + 3x) is incorrect as it represents adding eight times x to three times x, which is redundant. Choice C (3x - 8y) is incorrect because it represents subtracting eight times y from three times x, not their sum. Choice D (8x - 3y) is also incorrect as it represents subtracting three times y from eight times x, not their sum.

5. Solve the equation 8x − 6 = 3x + 24. Which of the following is the correct solution?

Correct answer: D

Rationale: To solve the equation 8x − 6 = 3x + 24, start by adding 6 to both sides: 8x − 6 + 6 = 3x + 24 + 6, which simplifies to 8x = 3x + 30. Next, subtract 3x from both sides to get 5x = 30. Finally, divide both sides by 5 to solve for x: x = 6. Therefore, the correct solution is x = 6. Choices A, B, and C are incorrect because they do not result from the correct algebraic manipulation of the equation.

Similar Questions

Solve for x: 3(x - 1) = 2(3x - 9)
The table below shows the number of books checked out from a library over the course of 4 weeks. Which equation describes the relationship between the number of books (b) and weeks (w)?
What is an exponent?
If the population of a city increases by 5% annually, what will the population be next year if the current population is 1,000?
What is the length of the unknown leg of a right triangle that has one leg measuring 9 feet and a hypotenuse of 19 feet? (Round to the nearest tenth.)

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$1/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses