simplify the following expression 5 x 3 9 x 4
Logo

Nursing Elites

ATI TEAS 7

TEAS 7 Math Practice Test

1. Simplify the following expression: 5 x 3 ÷ 9 x 4

Correct answer: A

Rationale: To simplify the expression 5 x 3 ÷ 9 x 4, first perform the multiplications and divisions from left to right: 5 x 3 = 15 and 9 x 4 = 36. So, the expression becomes 15 ÷ 36. When dividing fractions, multiply the first fraction by the reciprocal of the second fraction. Hence, 15 ÷ 36 = 15/36. To simplify the fraction further, find the greatest common divisor, which is 3. Divide both the numerator and denominator by 3 to get the final result: 15/36 = 5/12. Therefore, the correct answer is A. Choices B, C, and D are incorrect because they do not represent the correct simplification of the given expression.

2. The cost, in dollars, of shipping x computers to California for sale is 3000 + 100x. The amount received when selling these computers is 400x dollars. What is the least number of computers that must be shipped and sold so that the amount received is at least equal to the shipping cost?

Correct answer: B

Rationale: To find the least number of computers that must be shipped and sold so that the amount received is at least equal to the shipping cost, we set up the inequality 400x >= 3000 + 100x. Simplifying this inequality gives 300x >= 3000, and dividing by 300 results in x >= 10. Therefore, at least 15 computers must be shipped and sold to cover the shipping cost, making choice B the correct answer. Choices A, C, and D are incorrect as they represent numbers less than 15, which would not cover the shipping cost.

3. Simplify the expression: 2x + 3x - 5.

Correct answer: A

Rationale: To simplify the expression 2𝑥 + 3𝑥 - 5, follow these steps: Identify and combine like terms. The terms 2𝑥 and 3𝑥 are both 'like terms' because they both contain the variable 𝑥. Add the coefficients of the like terms: 2𝑥 + 3𝑥 = 5𝑥. Simplify the expression. After combining the like terms, the expression becomes 5𝑥 - 5, which includes the simplified term 5𝑥 and the constant -5. Thus, the fully simplified expression is 5𝑥 - 5, making Option A the correct answer. This method ensures all terms are correctly simplified by combining similar elements and retaining constants.

4. 3(x-2)=12. Solve the equation above for x. Which of the following is the correct answer?

Correct answer: A

Rationale: To solve the equation 3(x-2)=12, first distribute the 3: 3x - 6 = 12. Next, isolate x by adding 6 to both sides: 3x = 18. Finally, divide by 3 to find x: x = 6. Therefore, the correct answer is A (6). Choice B (-2) is incorrect as it does not satisfy the equation. Choice C (-4) is also incorrect as it does not satisfy the equation. Choice D (2) is incorrect as it does not satisfy the equation either.

5. 4 − 1/(22) + 24 ÷ (8 + 12). Simplify the expression. Which of the following is correct?

Correct answer: C

Rationale: First, complete the operations in parentheses: 4 − (1/22) + 24 ÷ 20. Next, simplify the exponents: 4 − (1/22) + 24 ÷ 20 = 4 − (1/4) + 24 ÷ 20. Then, complete multiplication and division operations: 4 − (1/4) + 24 ÷ 20 = 4 − 0.25 + 1.2. Finally, complete addition and subtraction operations: 4 − 0.25 + 1.2 = 4.95. Choice A, 1.39, is incorrect as it does not match the correct calculation. Choice B, 2.74, is incorrect as it is not the result of the given expression. Choice D, 15.28, is incorrect as it is not the correct simplification of the initial expression.

Similar Questions

A farmer plans to install fencing around a certain field. If each side of the hexagonal field is 320 feet long, and fencing costs $75 per foot, how much will the farmer need to spend on fencing material to enclose the perimeter of the field?
How many millimeters are in a meter?
What is the mean for the data set 16, 18, 17, 15, 19, 14, 12, 11, 10, 16, 18, and 17?
Write 290% as a fraction.
What is 1.25 as a fraction?

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses