ATI TEAS 7
TEAS 7 Math Practice Test
1. Simplify the following expression: 5 x 3 ÷ 9 x 4
- A. 5/12
- B. 8/13
- C. 20/27
- D. 47/36
Correct answer: A
Rationale: To simplify the expression 5 x 3 ÷ 9 x 4, first perform the multiplications and divisions from left to right: 5 x 3 = 15 and 9 x 4 = 36. So, the expression becomes 15 ÷ 36. When dividing fractions, multiply the first fraction by the reciprocal of the second fraction. Hence, 15 ÷ 36 = 15/36. To simplify the fraction further, find the greatest common divisor, which is 3. Divide both the numerator and denominator by 3 to get the final result: 15/36 = 5/12. Therefore, the correct answer is A. Choices B, C, and D are incorrect because they do not represent the correct simplification of the given expression.
2. After taxes, a worker earned $15,036 in 7 months. What is the amount the worker earned in 2 months?
- A. $2,148
- B. $4,296
- C. $6,444
- D. $8,592
Correct answer: B
Rationale: To find the amount earned in 2 months, set up a proportion using two ratios relating amount earned to months: (15,036/7) = (x /2). Cross-multiply and solve for x: 7x = 30,072, x = 4,296. Therefore, the worker earned $4,296 in 2 months. Choice A, $2,148, is incorrect as it is half of the correct answer. Choices C and D, $6,444 and $8,592, are incorrect as they do not correspond to the calculated proportion.
3. What is the result of multiplying 3/5 by 5/7?
- A. 3/7
- B. 1
- C. 2
- D. 4
Correct answer: A
Rationale: To multiply fractions, multiply the numerators together and the denominators together. Multiplying 3/5 by 5/7 gives (3*5)/(5*7) = 15/35. This fraction simplifies to 3/7 by dividing the numerator and denominator by their greatest common factor, which is 5. Therefore, the correct answer is 3/7. Choices B, C, and D are incorrect as they do not result from multiplying 3/5 by 5/7.
4. How do you find the radius of a circle when given the diameter? How do you find the radius of a circle when given the circumference?
- A. Radius = Diameter ÷ 2; Radius = Circumference ÷ 2π
- B. Radius = Diameter ÷ 3; Radius = Circumference ÷ π
- C. Radius = Diameter × 2; Radius = Circumference × 2π
- D. Radius = Diameter ÷ 4; Radius = Circumference ÷ π
Correct answer: A
Rationale: The correct way to find the radius of a circle when given the diameter is by dividing the diameter by 2 to get the radius (Radius = Diameter ÷ 2). When given the circumference, you need to divide the circumference by 2π to find the radius (Radius = Circumference ÷ 2π). Choice A provides the accurate formulas for finding the radius in both scenarios. Choices B, C, and D present incorrect formulas that do not align with the correct calculations for determining the radius of a circle based on the given information.
5. How do you convert Fahrenheit to Celsius and Celsius to Fahrenheit?
- A. Fahrenheit to Celsius: Subtract 32, then divide by 1.8; Celsius to Fahrenheit: Multiply by 1.8, then add 32
- B. Fahrenheit to Celsius: Subtract 32, then divide by 2; Celsius to Fahrenheit: Multiply by 1.8, then add 20
- C. Fahrenheit to Celsius: Multiply by 2, then add 32; Celsius to Fahrenheit: Subtract 32, then divide by 1.8
- D. Fahrenheit to Celsius: Subtract 30, then divide by 1.8; Celsius to Fahrenheit: Multiply by 2, then add 32
Correct answer: A
Rationale: To convert Fahrenheit to Celsius, you start by subtracting 32 from the Fahrenheit temperature and then divide the result by 1.8. This formula accounts for the freezing point of water at 32°F and the conversion factor to Celsius. To convert Celsius to Fahrenheit, you multiply the Celsius temperature by 1.8 and then add 32. This process takes into consideration the conversion factor from Celsius to Fahrenheit and the freezing point of water. Choice B is incorrect as dividing by 2 instead of 1.8 would yield an inaccurate conversion. Choice C is incorrect as it involves incorrect operations for both conversions. Choice D is incorrect as subtracting 30 instead of 32 for Fahrenheit to Celsius and multiplying by 2 instead of 1.8 for Celsius to Fahrenheit would provide incorrect results.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access