ATI TEAS 7
TEAS 7 Math Practice Test
1. Simplify the following expression: 5 x 3 ÷ 9 x 4
- A. 5/12
- B. 8/13
- C. 20/27
- D. 47/36
Correct answer: A
Rationale: To simplify the expression 5 x 3 ÷ 9 x 4, first perform the multiplications and divisions from left to right: 5 x 3 = 15 and 9 x 4 = 36. So, the expression becomes 15 ÷ 36. When dividing fractions, multiply the first fraction by the reciprocal of the second fraction. Hence, 15 ÷ 36 = 15/36. To simplify the fraction further, find the greatest common divisor, which is 3. Divide both the numerator and denominator by 3 to get the final result: 15/36 = 5/12. Therefore, the correct answer is A. Choices B, C, and D are incorrect because they do not represent the correct simplification of the given expression.
2. Simplify the following expression: (3)(-4) + (3)(4) - 1
- A. -1
- B. 1
- C. 23
- D. 24
Correct answer: A
Rationale: To solve the expression, first calculate the multiplication: (3)(-4) = -12 and (3)(4) = 12. Then, substitute the results back into the expression: (-12) + 12 - 1 = -1. Therefore, the correct answer is A. Choices B, C, and D are incorrect as they do not result from the correct calculations of the given expression.
3. Curtis measured the temperature of water in a flask in his science class. The temperature of the water was 35 °C. He carefully heated the flask so that the temperature of the water increased by about 2 °C every 3 minutes. Approximately how much had the temperature of the water increased after 20 minutes?
- A. 10 °C
- B. 13 °C
- C. 15 °C
- D. 35 °C
Correct answer: B
Rationale: To find the increase in temperature after 20 minutes, calculate how many 3-minute intervals are in 20 minutes (20 ÷ 3 = 6.66, rounding to 7 intervals). Then, multiply the temperature increase per interval (2 °C) by the number of intervals (7 intervals), giving a total increase of 14 °C. Therefore, after 20 minutes, the temperature of the water would have increased by approximately 14 °C. Choice A, 10 °C, is incorrect as it underestimates the total increase. Choice C, 15 °C, is incorrect as it overestimates the total increase. Choice D, 35 °C, is incorrect as it represents the initial temperature of the water, not the increase in temperature.
4. A homeowner has hired two people to mow his lawn. If person A is able to mow the lawn in 2 hours by herself and person B is able to mow the lawn in 3 hours by himself, what is the amount of time it would take for both person A and B to mow the lawn together?
- A. 5 hours
- B. 2.5 hours
- C. 1.2 hours
- D. 1 hour
Correct answer: C
Rationale: To find the combined work rate, you add the individual work rates: 1/2 + 1/3 = 5/6. This means that together, they can mow 5/6 of the lawn per hour. To determine how long it would take for both A and B to mow the entire lawn, you take the reciprocal of 5/6, which gives you 6/5 or 1.2 hours. Therefore, it would take 1.2 hours for person A and person B to mow the lawn together. Choice A (5 hours) is incorrect because it does not consider the combined efficiency of both workers. Choice B (2.5 hours) is incorrect as it does not reflect the correct calculation based on the combined work rates of the two individuals. Choice D (1 hour) is incorrect as it doesn't consider the fact that the combined rate is less than the individual rate of person A alone, thus taking longer than 1 hour.
5. Find the area in square centimeters of a circle with a diameter of 16 centimeters. Use 3.14 for π.
- A. 25.12
- B. 50.24
- C. 100.48
- D. 200.96
Correct answer: D
Rationale: The formula for the area of a circle is: Area = π x (radius²). Given: Diameter = 16 cm, so Radius = Diameter / 2 = 16 / 2 = 8 cm. Now, calculate the area using π = 3.14: Area = 3.14 x (8²) = 3.14 x 64 = 200.96 cm². The correct answer is D (200.96 cm²) as it correctly calculates the area of the circle. Choices A, B, and C are incorrect as they do not represent the accurate area of the circle based on the given diameter and π value.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access