ATI TEAS 7
Math Practice TEAS Test
1. How many quarts are in 1 liter?
- A. 1 quart
- B. 1.06 quarts
- C. 2 quarts
- D. 0.5 quarts
Correct answer: B
Rationale: To convert liters to quarts, you can use the conversion factor 1 liter ≈ 1.06 quarts. Therefore, 1 liter is approximately 1.06 quarts. Choice A is incorrect because 1 quart is not equivalent to 1 liter. Choice C is incorrect as 2 quarts is more than 1 liter. Choice D is incorrect as 0.5 quarts is half of 1 liter.
2. Your measurement of the width of a door is 36 inches. The actual width of the door is 35.75 inches. What is the relative error in your measurement?
- A. 0.70%
- B. 0.01%
- C. 0.99%
- D. 0.10%
Correct answer: A
Rationale: To calculate relative error, you use the formula: (|measured value - actual value| / actual value) * 100%. Substituting the values, we get (|36 - 35.75| / 35.75) * 100% = (0.25 / 35.75) * 100% = 0.7%. This means your measurement is off by 0.7% from the actual width of the door. Choice B, 0.01%, is too small as it doesn't reflect the actual difference. Choices C and D are significantly different from the calculated answer and do not represent the accurate relative error in the measurement.
3. Which statement about the following set is true? {60, 5, 18, 20, 37, 37, 11, 90, 72}
- A. The median and the mean are equal.
- B. The mean is less than the mode.
- C. The mode is greater than the median.
- D. The median is less than the mean.
Correct answer: D
Rationale: To find the median, we first need to arrange the set in ascending order: {5, 11, 18, 20, 37, 37, 60, 72, 90}. The median is the middle value, which is 37 in this case. The mean is calculated by adding all numbers and dividing by the total count, which gives a mean greater than 37. Therefore, the statement that the median is less than the mean is correct. Choice A is incorrect because the median and mean are not equal in this set. Choice B is incorrect as the mean is greater than the mode in this set. Choice C is incorrect as the mode is 37, which is equal to the median, not greater.
4. What is the sum of two odd numbers, two even numbers, and an odd number and an even number?
- A. Odd + Odd = Even; Even + Even = Even; Odd + Even = Odd
- B. Odd + Odd = Odd; Even + Even = Even; Odd + Even = Even
- C. Odd + Odd = Even; Even + Even = Odd; Odd + Even = Even
- D. Odd + Odd = Odd; Even + Even = Odd; Odd + Even = Even
Correct answer: A
Rationale: The sum of two odd numbers is even because odd numbers have a difference of 1 and adding them results in a multiple of 2. The sum of two even numbers is even because even numbers are multiples of 2. When an odd number and an even number are added, the result is odd because the even number contributes an extra 1 to the sum, making it an odd number. Therefore, the correct answer is A. Choices B, C, and D have incorrect combinations of the sum of odd and even numbers.
5. On a floor plan drawn at a scale of 1:100, the area of a rectangular room is 50 cm². What is the actual area of the room?
- A. 500 m²
- B. 50 m²
- C. 5000 cm²
- D. 500 cm²
Correct answer: D
Rationale: The scale of 1:100 means that 1 cm² on the floor plan represents 100 cm² in real life. To find the actual area of the room, you need to multiply the area on the floor plan by the square of the scale factor. Since the scale is 1:100, the scale factor is 100. Therefore, 50 cm² on the floor plan represents 50 * 100 = 5000 cm² in real life. Choice A (500 m²) is incorrect as it converts the area from cm² to m² without considering the scale factor. Choice B (50 m²) is incorrect as it does not account for the scale factor. Choice C (5000 cm²) is incorrect as it gives the area on the floor plan, not the actual area.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access