ATI TEAS 7
Practice Math TEAS TEST
1. Which of the following is the independent variable in the equation below? f(t)=4t+9
- A. f
- B. 9
- C. t
- D. 4
Correct answer: C
Rationale: The independent variable in a function is the variable that is being manipulated or changed to obtain different values. In the equation f(t) = 4t + 9, the variable 't' is the independent variable. It is the variable that the function f(t) depends on, and changing its value will result in different outputs for the function. The other choices, 'f', '9', and '4', are not the independent variable as they do not represent the variable that is being manipulated to determine the function's output.
2. Four people split a bill. The first person pays 1/5, the second person pays 1/3, and the third person pays 1/12. What fraction of the bill does the fourth person pay?
- A. 1/4
- B. 13/60
- C. 47/60
- D. 1/4
Correct answer: C
Rationale: To find the fourth person's share, subtract the fractions paid by the first three people from the total bill (1). The first person pays 1/5, the second person pays 1/3, and the third person pays 1/12. Adding these fractions gives 7/15. Subtracting this from 1 gives the fourth person's share as 8/15, which simplifies to 4/5. Therefore, the fourth person pays 4/5 of the bill. Option A (1/4) is incorrect because it does not consider the fractions paid by the first three people. Option B (13/60) is incorrect as it is not the remainder after subtracting the first three fractions from 1. Option D (1/4) is a duplicate of Option A and is also incorrect.
3. Out of 9 trips, a person chooses the longest route for 3 of them. What percentage of their trips is the longest route?
- A. 0.25
- B. 0.33
- C. 0.5
- D. 0.75
Correct answer: B
Rationale: To find the percentage of trips where the person chose the longest route, divide the number of longest route trips (3) by the total number of trips (9) and multiply by 100. This gives (3/9) * 100 = 33.33%, which can be rounded to 33%. Therefore, the correct answer is B. Choice A (0.25), C (0.5), and D (0.75) are incorrect because they do not accurately represent the percentage of trips where the longest route was chosen based on the given information.
4. Elijah drove 45 miles to his job in an hour and ten minutes in the morning. On the way home in the evening, however, the traffic was much heavier, and the same trip took an hour and a half. What was his average speed in miles per hour for the round trip?
- A. 30
- B. 45
- C. 36
- D. 40
Correct answer: A
Rationale: To find the average speed for the round trip, we calculate the total distance and total time traveled. The total distance for the round trip is 45 miles each way, so 45 miles * 2 = 90 miles. The total time taken for the morning trip is 1 hour and 10 minutes (1.17 hours), and for the evening trip is 1.5 hours. Therefore, the total time for the round trip is 1.17 hours + 1.5 hours = 2.67 hours. To find the average speed, we divide the total distance by the total time: 90 miles / 2.67 hours ≈ 33.7 miles per hour. The closest option is A, 30 miles per hour, making it the correct answer. Choice B (45) is the total distance for the round trip, not the average speed. Choices C (36) and D (40) are not derived from the correct calculations and do not represent the average speed for the round trip.
5. If the width of a rectangle is 4 inches (in) and the area of the rectangle is 32 in², what is the length of the rectangle?
- A. 8 in
- B. 28 in
- C. 36 in
- D. 128 in
Correct answer: A
Rationale: To find the length of the rectangle, we use the formula: Length = Area / Width. Substituting the values given, Length = 32 in² / 4 in = 8 in. Therefore, the correct answer is A. Choice B (28 in), Choice C (36 in), and Choice D (128 in) are incorrect because they do not correctly calculate the length based on the given width and area of the rectangle.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access