which of the following is the independent variable in the equation below ft4t9
Logo

Nursing Elites

ATI TEAS 7

Practice Math TEAS TEST

1. Which of the following is the independent variable in the equation below? f(t)=4t+9

Correct answer: C

Rationale: The independent variable in a function is the variable that is being manipulated or changed to obtain different values. In the equation f(t) = 4t + 9, the variable 't' is the independent variable. It is the variable that the function f(t) depends on, and changing its value will result in different outputs for the function. The other choices, 'f', '9', and '4', are not the independent variable as they do not represent the variable that is being manipulated to determine the function's output.

2. How much did he save from the original price?

Correct answer: B

Rationale: To calculate the amount saved from the original price, you need to subtract the discounted price from the original price. The formula is: Original price - Discounted price = Amount saved. In this case, the original price was $850, and the discounted price was $637.50. Therefore, $850 - $637.50 = $212.50. Hence, he saved $212.50 from the original price. Choice A ($170) is incorrect as it is not the correct amount saved. Choice C ($105.75) is incorrect as it does not match the calculated savings. Choice D ($200) is incorrect as it is not the accurate amount saved based on the given prices.

3. Solve the following: 4 x 7 + (25 – 21)²

Correct answer: B

Rationale: First, solve the expression inside the parentheses: 25 − 21 = 4 25−21=4 Then, square the result from the parentheses: 4 2 = 16 4 2 =16 Perform the multiplication: 4 × 7 = 28 4×7=28 Finally, add the results: 28 + 16 = 44 28+16=44

4. Between the years 2000 and 2010, the number of births in the town of Daneville increased from 1432 to 2219. What is the approximate percent increase in the number of births?

Correct answer: A

Rationale: To calculate the percent increase, subtract the initial value from the final value, which gives 2219 - 1432 = 787. Then, divide the increase (787) by the initial value (1432) and multiply by 100 to get the percentage: (787/1432) * 100 = 55%. Therefore, the approximate percent increase in the number of births is 55%. Choice B, 36%, is incorrect because it does not match the calculated increase. Choice C, 64%, is incorrect as it is higher than the actual percentage. Choice D, 42%, is incorrect as it is lower than the actual percentage.

5. A patient is prescribed 5 mg of medication per kilogram of body weight. If the patient weighs 60 kg, how many milligrams of medication should the patient receive?

Correct answer: C

Rationale: The correct calculation to determine the medication dosage for a patient weighing 60 kg is: 5 mg/kg x 60 kg = 300 mg. Therefore, the patient should receive 300 mg of medication. Choice A (100 mg) is incorrect as it does not account for the patient's weight. Choice B (150 mg) is incorrect as it miscalculates the dosage. Choice D (400 mg) is incorrect as it overestimates the dosage based on the patient's weight.

Similar Questions

If 𝑛 = 8, then n is between which of the following ranges?
Veronica decided to celebrate her promotion by purchasing a new car. The base price for the car was $40,210. She paid an additional $3,015 for a surround sound system and $5,218 for a maintenance package. What was the total price of Veronica's new car?
Adam is painting the outside of a 4-walled shed. The shed is 5 feet wide, 4 feet deep, and 7 feet high. Which of the following is the amount of paint Adam will need for the four walls?
Four people split a bill. The first person pays for 1/3, the second person pays for 1/4, and the third person pays for 1/6. What fraction of the bill does the fourth person pay?
A large pizza has a diameter of 9 inches. Which of the following is the area of the pizza in terms of pi?

Access More Features

ATI TEAS Premium Plus
$150/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses