ATI TEAS 7
Math Practice TEAS Test
1. If 9.5% of a town's population of 51,623 people voted for a proposition, approximately how many people voted for the proposition?
- A. 3000
- B. 5000
- C. 7000
- D. 10000
Correct answer: B
Rationale: To find the approximate number of people who voted for the proposition, multiply the town's population by the percentage that voted: 51,623 * 9.5% = 51,623 * 0.095 ≈ 4,904. Therefore, approximately 5,000 people voted for the proposition. Choice A (3000), C (7000), and D (10000) are incorrect because they do not accurately represent 9.5% of the town's population.
2. University X requires some of its nursing students to take an exam before being admitted into the nursing program. In this year's class, half of the nursing students were required to take the exam, and three-fifths of those who took the exam passed. If this year's class has 200 students, how many students passed the exam?
- A. 120
- B. 100
- C. 60
- D. 50
Correct answer: C
Rationale: If the incoming class has 200 students, then half of those students were required to take the exam. (200)(1/2) = 100. So 100 students took the exam, but only three-fifths of that 100 passed the exam. (100)(3/5) = 60. Therefore, 60 students passed the exam. The correct answer is 60. Choice A is incorrect as it miscalculates the number of students who passed the exam. Choice B is incorrect as it does not consider the passing rate of the exam. Choice D is incorrect as it is much lower than the correct answer.
3. Simplify the following expression: 0.0178 × 2.401
- A. 2.0358414
- B. 0.0427378
- C. 0.2341695
- D. 0.348324
Correct answer: B
Rationale: To simplify the expression 0.0178 × 2.401, you multiply the two numbers to get the result. Therefore, 0.0178 × 2.401 = 0.0427378. Choice A (2.0358414), Choice C (0.2341695), and Choice D (0.348324) are incorrect as they do not represent the correct result of the multiplication operation.
4. What are all the factors of 12?
- A. 12, 24, 36
- B. 1, 2, 4, 6, 12
- C. 12, 24, 36, 48
- D. 1, 2, 3, 4, 6, 12
Correct answer: D
Rationale: The factors of 12 are numbers that divide evenly into 12 without leaving a remainder. The correct factors of 12 are 1, 2, 3, 4, 6, and 12. Choice A (12, 24, 36) is incorrect as only 12 is a factor of 12. Choice B (1, 2, 4, 6, 12) includes all the correct factors of 12. Choice C (12, 24, 36, 48) is incorrect as 24, 36, and 48 are not factors of 12.
5. In Jim's school, there are 3 girls for every 2 boys. There are 650 students in total. Using this information, how many students are girls?
- A. 260
- B. 130
- C. 65
- D. 390
Correct answer: A
Rationale: To find the number of girls in Jim's school, we first establish the ratio of girls to boys as 3:2. This ratio implies that out of every 5 students (3 girls + 2 boys), 3 are girls and 2 are boys. Since there are a total of 650 students, we can divide them into 5 equal parts based on the ratio. Each part represents 650 divided by 5, which is 130. Therefore, there are 3 parts of girls in the school, totaling 3 multiplied by 130, which equals 390. Hence, there are 390 girls in Jim's school. Choice A, 260, is incorrect as it does not consider the correct ratio and calculation. Choice B, 130, is incorrect as it only represents one part of the total students, not the number of girls. Choice C, 65, is incorrect as it ignores the total number of students and the ratio provided.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access