ATI TEAS 7
Math Practice TEAS Test
1. What percentage of the total rainfall in this timeframe occurs during October?
- A. 0.135
- B. 0.151
- C. 0.169
- D. 0.177
Correct answer: B
Rationale: To calculate the percentage of rainfall that occurs during October, divide October's rainfall (4.5 inches) by the total rainfall (29.38 inches) and multiply by 100. So, (4.5 / 29.38) * 100 = 15.31%. Among the choices given, option B, 0.151, is the closest to this calculated percentage. Options A, C, and D are not correct as they do not match the accurate calculation based on the provided data.
2. What is a factor?
- A. A number that you multiply to get another number
- B. A number that divides evenly into another number
- C. A number that can be both multiplied and divided by another number
- D. A number that is greater than 1
Correct answer: A
Rationale: A factor is a number that can be multiplied by another number to produce a third number. When you multiply factors together, you get the original number. For example, the factors of 12 are 1, 2, 3, 4, 6, and 12 because these numbers can be multiplied in pairs to give the product 12. Choice B is incorrect as it describes a divisor. Choice C is incorrect because factors are only multiplied, not divided. Choice D is incorrect because factors can be any number, not just those greater than 1.
3. In Mrs. McConnell's classroom, there are 5 students with hazel eyes and 2 students with green eyes out of a total of 30 students. What percentage of the students have either hazel or green eyes?
- A. 0.23
- B. 0.3
- C. 0.47
- D. 0.77
Correct answer: A
Rationale: To calculate the percentage of students with either hazel or green eyes, add the number of students with hazel and green eyes (5 + 2 = 7) and divide by the total number of students (30): 7 ÷ 30 ≈ 0.23 or 23%. The correct answer is A, 0.23, which represents 23% of the total students. Choice B, 0.3, is incorrect as it corresponds to 30%, which is higher than the total number of students. Choice C, 0.47, is incorrect as it represents 47%, which is also higher than the total number of students. Choice D, 0.77, is incorrect as it corresponds to 77%, which is much higher than the total number of students.
4. During week 1, Cameron worked 5 shifts. During week 2, she worked twice as many shifts. During week 3, she added 4 more shifts. How many shifts did Cameron work in week 3?
- A. 15 shifts
- B. 14 shifts
- C. 16 shifts
- D. 17 shifts
Correct answer: B
Rationale: To find out how many shifts Cameron worked in week 3, we first determine the shifts worked in weeks 1 and 2. In week 1, Cameron worked 5 shifts. In week 2, she worked twice as many shifts, which is 5 x 2 = 10 shifts. Adding the 4 more shifts in week 3, the total shifts worked in week 3 would be 5 (week 1) + 10 (week 2) + 4 (week 3) = 19 shifts. Therefore, the correct answer is 14 shifts (Option B), not 15 shifts (Option A), 16 shifts (Option C), or 17 shifts (Option D).
5. Apply the polynomial identity to rewrite (a + b)².
- A. a² + b²
- B. 2ab
- C. a² + 2ab + b²
- D. a² - 2ab + b²
Correct answer: C
Rationale: When you see something like (a + b)², it means you're multiplying (a + b) by itself: (a + b)² = (a + b) × (a + b) To expand this, we use the distributive property (which says you multiply each term in the first bracket by each term in the second bracket): Multiply the first term in the first bracket (a) by both terms in the second bracket: a × a = a² a × b = ab Multiply the second term in the first bracket (b) by both terms in the second bracket: b × a = ab b × b = b² Now, add up all the results from the multiplication: a² + ab + ab + b² Since ab + ab is the same as 2ab, we can simplify it to: a² + 2ab + b² So, (a + b)² = a² + 2ab + b². This is known as a basic polynomial identity, and it shows that when you square a binomial (a two-term expression like a + b), you get three terms: the square of the first term (a²), twice the product of the two terms (2ab), and the square of the second term (b²). Therefore, the correct answer is C (a² + 2ab + b²)
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access