how much did he save from the original price
Logo

Nursing Elites

ATI TEAS 7

TEAS Test Math Prep

1. How much did he save from the original price?

Correct answer: B

Rationale: To calculate the amount saved from the original price, you need to subtract the discounted price from the original price. The formula is: Original price - Discounted price = Amount saved. In this case, the original price was $850, and the discounted price was $637.50. Therefore, $850 - $637.50 = $212.50. Hence, he saved $212.50 from the original price. Choice A ($170) is incorrect as it is not the correct amount saved. Choice C ($105.75) is incorrect as it does not match the calculated savings. Choice D ($200) is incorrect as it is not the accurate amount saved based on the given prices.

2. What is the surface area of the cylinder shown below?

Correct answer: D

Rationale: The surface area of a cylinder can be calculated using the formula: S = 2πr² + 2πrh, where r is the radius and h is the height. Substituting the values for radius (12) and height (8) into the formula: S = 2π(12)² + 2π(12)(8). S = 2π(144) + 2π(96). S = 288π + 192π. S = 480π ≈ 1507.964. Therefore, the surface area of the cylinder is approximately 1507.2 square centimeters. Choice A, 602.9 cm², is incorrect as it is significantly lower than the correct value. Choice B, 904.3 cm², is also incorrect as it does not match the calculated surface area. Choice C, 1,408.7 cm², is incorrect as it does not align with the calculated value of the surface area.

3. What is the difference between two equal numbers?

Correct answer: C

Rationale: The difference between two numbers is found by subtracting one from the other. When two numbers are equal, subtracting them results in 0, because any number minus itself is always 0. Therefore, the difference between two equal numbers is always zero, making option C the correct answer. Option A ('Negative') and option B ('Positive') are incorrect as they do not represent the result of subtracting two equal numbers, which always yields zero. Option D ('Not enough information') is also incorrect as the difference between two equal numbers is definitively known to be zero.

4. Which percentage is greatest?

Correct answer: C

Rationale: To determine the highest percentage, we need to calculate each option. The percentage in answer A is: 50 / 250 x 100 = 20%. The percentage in answer B is: 57 / 250 x 100 = 22.8%. The percentage in answer C is: (74 + 55) / 433 x 100 = 29.8%. The percentage in answer D is: 21 / 183 x 100 = 11.5%. Therefore, the correct answer is C, as it has the highest percentage of doctors among the staff at both hospitals. Choices A, B, and D are incorrect as they have lower percentages compared to choice C.

5. Gordon purchased a television that was 30% off its original price of $472. What was the sale price?

Correct answer: D

Rationale: To find the sale price after a 30% discount, you first calculate the discount amount which is 30% of $472. 30% of $472 is $141.60. To find the sale price, you subtract the discount amount from the original price: $472 - $141.60 = $330.40. Therefore, the sale price of the television after a 30% discount would be $330.40. Choices A, B, and C are incorrect as they do not accurately reflect the calculated sale price after the discount.

Similar Questions

Lauren must travel a distance of 1,480 miles to get to her destination. She plans to drive approximately the same number of miles per day for 5 days. Which of the following is a reasonable estimate of the number of miles she will drive per day?
What is the area of a triangle with a base of 10 cm and a height of 7 cm?
Simplify the following expression: 3 (1/6) - 1 (5/6)
A woman’s dinner bill comes to $48.30. If she adds a 20% tip, which of the following will be her total bill?
Solve the system of equations. Equation 1: 2x + y = 0 Equation 2: x - 2y = 8

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$1/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses