ATI TEAS 7
TEAS Test Math Prep
1. John’s Gym charges its members according to the equation y = 40x, where x is the number of months and y represents the total cost to each customer after x months. Ralph’s Recreation Room charges its members according to the equation y = 45x. What relationship can be determined about the monthly cost to the members of each company?
- A. John’s monthly membership fee is equal to Ralph’s monthly membership fee.
- B. John’s monthly membership fee is more than Ralph’s monthly membership fee.
- C. John’s monthly membership fee is less than Ralph’s monthly membership fee.
- D. No relationship can be determined between the monthly membership fees.
Correct answer: C
Rationale: The equation y = 40x represents John's Gym charging $40 per month, while the equation y = 45x represents Ralph's Recreation Room charging $45 per month. Since $40 is less than $45, it can be concluded that John's Gym offers a lower monthly membership fee compared to Ralph's Recreation Room. Therefore, the correct answer is that John’s monthly membership fee is less than Ralph’s monthly membership fee. Choices A and B are incorrect because John's fee is not equal to or greater than Ralph's fee. Choice D is incorrect as there is a clear relationship indicating that John’s monthly membership fee is less than Ralph’s monthly membership fee.
2. A driver drove 305 miles at 65 mph, stopped for 15 minutes, then drove another 162 miles at 80 mph. How long was the trip?
- A. 6.44 hours
- B. 6.69 hours
- C. 6.97 hours
- D. 5.97 hours
Correct answer: B
Rationale: To find the total trip duration, calculate the driving time for each segment and add the stop time. The driving time for the first segment is 305 miles ÷ 65 mph = 4.69 hours. The driving time for the second segment is 162 miles ÷ 80 mph = 2.025 hours. Adding the 15-minute stop (0.25 hours) gives a total time of 4.69 hours + 2.025 hours + 0.25 hours = 6.965 hours, which is closest to 6.69 hours (Choice B). Option A is incorrect as it miscalculates the total duration. Option C is incorrect as it overestimates the total duration. Option D is incorrect as it underestimates the total duration.
3. Which of the following is equivalent to 8 pounds and 8 ounces? (Round to the nearest tenth of a kilogram.)
- A. 3.6 kilograms
- B. 3.9 kilograms
- C. 17.6 kilograms
- D. 18.7 kilograms
Correct answer: B
Rationale: To convert 8 pounds and 8 ounces to kilograms, first convert 8 ounces to pounds by dividing by 16 (since 1 pound = 16 ounces): 8 ounces / 16 = 0.5 pounds. Then add this to the original 8 pounds: 8 pounds + 0.5 pounds = 8.5 pounds. To convert pounds to kilograms, use the conversion factor 1 pound = 0.453592 kilograms. Therefore, 8.5 pounds × 0.453592 kg = 3.855 kilograms, which rounds to 3.9 kilograms. Choice A (3.6 kilograms), Choice C (17.6 kilograms), and Choice D (18.7 kilograms) are incorrect conversions or have errors in calculation compared to the correct conversion of 3.9 kilograms.
4. Over several years, a real estate agent sold houses, with one year having an outlier where she sold 11 houses. Which of the following measures will most accurately reflect the number of houses she sold per year?
- A. mean
- B. median
- C. mode
- D. range
Correct answer: B
Rationale: The outlier of 11 would skew the data if the mean or range were used. The median, however, is not affected by outliers and is the most appropriate measure for reflecting the number of houses she sold per year. In this scenario, the data set does not have a mode as each value occurs only once, making mode not the most appropriate choice.
5. What defines a proper fraction versus an improper fraction?
- A. Proper: numerator < denominator; Improper: numerator > denominator
- B. Proper: numerator > denominator; Improper: numerator < denominator
- C. Proper: numerator = denominator; Improper: numerator < denominator
- D. Proper: numerator < denominator; Improper: numerator = denominator
Correct answer: A
Rationale: A proper fraction is characterized by having a numerator smaller than the denominator, while an improper fraction has a numerator larger than the denominator. Therefore, choice A is correct. Choice B is incorrect because it states the opposite relationship between the numerator and denominator for proper and improper fractions. Choice C is incorrect as it describes a fraction where the numerator is equal to the denominator, which is a different concept. Choice D is incorrect as it associates a numerator being smaller than the denominator with an improper fraction, which is inaccurate.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$49/ 30 days
- 3,000 Questions with answers
- 30 days access