ATI TEAS 7
TEAS Test Math Prep
1. John’s Gym charges its members according to the equation y = 40x, where x is the number of months and y represents the total cost to each customer after x months. Ralph’s Recreation Room charges its members according to the equation y = 45x. What relationship can be determined about the monthly cost to the members of each company?
- A. John’s monthly membership fee is equal to Ralph’s monthly membership fee.
- B. John’s monthly membership fee is more than Ralph’s monthly membership fee.
- C. John’s monthly membership fee is less than Ralph’s monthly membership fee.
- D. No relationship can be determined between the monthly membership fees.
Correct answer: C
Rationale: The equation y = 40x represents John's Gym charging $40 per month, while the equation y = 45x represents Ralph's Recreation Room charging $45 per month. Since $40 is less than $45, it can be concluded that John's Gym offers a lower monthly membership fee compared to Ralph's Recreation Room. Therefore, the correct answer is that John’s monthly membership fee is less than Ralph’s monthly membership fee. Choices A and B are incorrect because John's fee is not equal to or greater than Ralph's fee. Choice D is incorrect as there is a clear relationship indicating that John’s monthly membership fee is less than Ralph’s monthly membership fee.
2. If a product's original price is $80 and it is discounted by 20%, what is the final price?
- A. 64
- B. 60
- C. 70
- D. 66
Correct answer: A
Rationale: To find the discounted price, you first calculate 20% of the original price: 20% of $80 is $16. Subtracting this discount amount from the original price gives the final price: $80 - $16 = $64. Therefore, the final price after a 20% discount on a product originally priced at $80 is $64. Choice B, $60, is incorrect because it does not account for the correct discount amount. Choice C, $70, is incorrect as it does not reflect the reduction due to the 20% discount. Choice D, $66, is incorrect as it miscalculates the discounted price.
3. Adam is painting the outside of a 4-walled shed. The shed is 5 feet wide, 4 feet deep, and 7 feet high. Which of the following is the amount of paint Adam will need for the four walls?
- A. 80 ft²
- B. 126 ft²
- C. 140 ft²
- D. 560 ft²
Correct answer: B
Rationale: To find the amount of paint needed for the four walls of the shed, calculate the total area of the four walls. The shed has two pairs of identical walls. The area of one pair of walls is 5 feet (width) x 7 feet (height) + 4 feet (depth) x 7 feet (height) = 35 ft² + 28 ft² = 63 ft². Since there are two pairs of walls, the total area for the four walls is 2 x 63 ft² = 126 ft². Therefore, Adam will need 126 ft² of paint for the four walls. Choice A, 80 ft², is incorrect as it does not account for the total surface area of all four walls. Choice C, 140 ft², is incorrect as it overestimates the area required. Choice D, 560 ft², is incorrect as it significantly overestimates the amount of paint needed for the shed.
4. Solve the equation 3(2x+5)=11x+5 for x. Which of the following is correct?
- A. 1
- B. 2
- C. -1
- D. -2
Correct answer: B
Rationale: To solve the equation, distribute 3 to both terms inside the parentheses: 6x + 15 = 11x + 5. Then, move 11x to the left side by subtracting it from both sides: 6x - 11x = 5 - 15. Simplify to get -5x = -10. Divide by -5 to isolate x: x = 2. Therefore, the correct answer is x = 2. Choices A, C, and D are incorrect because they do not match the correct solution obtained by solving the equation step by step.
5. How many centimeters are in 7 meters?
- A. 7 m = 7 cm
- B. 7 m = 70 cm
- C. 7 m = 700 cm
- D. 7 m = 7000 cm
Correct answer: C
Rationale: The prefix 'centi-' means one-hundredth. In the metric system, 1 meter is equal to 100 centimeters. Therefore, to convert meters to centimeters, you multiply the number of meters by 100. In this case, 7 meters is equal to 7 * 100 = 700 centimeters. Choice A is incorrect as it does not consider the conversion factor properly. Choice B is incorrect as it only accounts for a factor of 10 instead of 100. Choice D is incorrect as it overestimates the conversion by a factor of 10.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access