ATI TEAS 7
TEAS Math Practice Test
1. At the beginning of the day, Xavier has 20 apples. At lunch, he meets his sister Emma and gives her half of his apples. After lunch, he stops by his neighbor Jim's house and gives him 6 of his apples. He then uses 3/4 of his remaining apples to make an apple pie for dessert at dinner. At the end of the day, how many apples does Xavier have left?
- A. 4
- B. 6
- C. 2
- D. 1
Correct answer: D
Rationale: Xavier gives away half of his 20 apples (10), then gives 6 more apples, leaving him with 4 apples. He uses 3/4 of the remaining 4 apples (3) for the pie, leaving him with 1 apple at the end of the day. Therefore, the correct answer is 1. Choices A, B, and C are incorrect because they do not accurately reflect the calculations of apples given away and used for the pie, resulting in the remaining amount of 1 apple.
2. What is the product of two irrational numbers?
- A. Irrational
- B. Rational
- C. Irrational or rational
- D. Complex and imaginary
Correct answer: C
Rationale: The correct answer is C: 'Irrational or rational.' When you multiply two irrational numbers, the result can be either irrational or rational. For example, multiplying the square root of 2 (√2) by itself results in the rational number 2. This shows that the product of two irrational numbers can lead to a rational result. Choices A, B, and D are incorrect because the product of two irrational numbers is not limited to being irrational; it can also be rational.
3. What is the surface area of the cylinder shown below?
- A. 602.9 cm²
- B. 904.3 cm²
- C. 1,408.7 cm²
- D. 1,507.2 cm²
Correct answer: D
Rationale: The surface area of a cylinder can be calculated using the formula: S = 2πr² + 2πrh, where r is the radius and h is the height. Substituting the values for radius (12) and height (8) into the formula: S = 2π(12)² + 2π(12)(8). S = 2π(144) + 2π(96). S = 288π + 192π. S = 480π ≈ 1507.964. Therefore, the surface area of the cylinder is approximately 1507.2 square centimeters. Choice A, 602.9 cm², is incorrect as it is significantly lower than the correct value. Choice B, 904.3 cm², is also incorrect as it does not match the calculated surface area. Choice C, 1,408.7 cm², is incorrect as it does not align with the calculated value of the surface area.
4. What is the simplest way to write the following expression? 5x - 2y + 4x + y
- A. 9x - y
- B. 9x - 3y
- C. 9x + 3y
- D. x; y
Correct answer: A
Rationale: To simplify the given expression 5x - 2y + 4x + y, we combine like terms. Grouping the x terms together and the y terms together, we have 5x + 4x - 2y + y. Combining like terms results in 9x - y. Therefore, the simplest form of the expression is 9x - y, which corresponds to option A. Option B is incorrect because it incorrectly subtracts 3y instead of just y. Option C is incorrect because it adds 3y instead of subtracting y. Option D is incorrect as it separates x and y with a semicolon instead of an operation, providing no simplified expression.
5. What is the least common denominator of two fractions?
- A. The smallest number that is a multiple of both denominators
- B. The smallest number that both fractions can divide into evenly
- C. The least common multiple of both denominators
- D. The greatest common factor of both denominators
Correct answer: C
Rationale: The least common denominator of two fractions is the least common multiple of both denominators. This is because the least common denominator is the smallest number that both denominators can divide into evenly, ensuring that both fractions can be expressed with a common denominator. Choice A is incorrect as the least common denominator is a multiple of both denominators, not a number that multiplies into both. Choice B is incorrect because the common denominator needs to be a multiple of both denominators, not just a number they can divide into evenly. Choice D is incorrect as the greatest common factor is not used to find the least common denominator, but rather the least common multiple.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access