ATI TEAS 7
TEAS Exam Math Practice
1. Simplify the expression. Which of the following is correct? (3/2)(8/3) ÷ (5/4)
- A. 1
- B. 2
- C. 3
- D. 4
Correct answer: B
Rationale: Using PEMDAS (Parentheses, Exponents, Multiplication and Division, Addition and Subtraction): (3/2)(8/3) ÷ (5/4) = (24/6) ÷ (5/4) = (4/1) ÷ (5/4). To divide fractions, the second fraction is flipped and then multiplied by the first fraction, resulting in (4/1)(4/5) = (16/5), which simplifies to 3(1/5) or 2.
2. The owner of a newspaper has noticed that print subscriptions have gone down 40% while online subscriptions have gone up 60%. Print subscriptions once accounted for 70% of the newspaper’s business, and online subscriptions accounted for 25%. What is the overall percentage growth or decline in business?
- A. 13% decline
- B. 15% decline
- C. 28% growth
- D. 8% growth
Correct answer: A
Rationale: To calculate the decline in business, start with the 40% decline in the 70% share of print subscriptions: 40% of 70% = 0.40 × 0.70 = 0.28 = 28% decline. Next, calculate the growth from the 60% increase in the 25% share of online subscriptions: 60% of 25% = 0.60 × 0.25 = 0.15 = 15% growth. To find the overall change, sum the decline and growth percentages: 28% decline + 15% growth = -0.28 + 0.15 = -0.13 = 13% decline. Therefore, the overall percentage change in the newspaper's business is a 13% decline. Option A is the correct answer. Option B is incorrect because it doesn't consider the correct calculations for both the decline and growth. Option C is incorrect as it misinterprets the net change in business. Option D is incorrect as it miscalculates the overall percentage growth or decline.
3. Which of the following percentages is equivalent to the fraction 3/4?
- A. 57%
- B. 7.50%
- C. 65%
- D. 75%
Correct answer: D
Rationale: To convert a fraction to a percentage, you multiply the fraction by 100. In this case, 3/4 * 100% = 75%. Therefore, the correct answer is D. Choice A (57%) is incorrect as it does not represent the fraction 3/4. Choice B (7.50%) is incorrect as it is not the equivalent percentage of 3/4. Choice C (65%) is incorrect as it does not match the percentage value of 3/4.
4. To begin making her soup, Jennifer added four containers of chicken broth with 1 liter of water into the pot. Each container of chicken broth contains 410 milliliters. How much liquid is in the pot?
- A. 1.64 liters
- B. 2.64 liters
- C. 5.44 liters
- D. 6.12 liters
Correct answer: B
Rationale: Each container of chicken broth contains 410 milliliters. Jennifer added four containers, which totals 4 * 410 = 1640 milliliters of chicken broth. She then added 1 liter of water, equivalent to 1000 milliliters. Combining all the liquids, we get 1640 + 1000 = 2640 milliliters, which equals 2.64 liters. Choice A is incorrect because it miscalculates the total liquid volume. Choice C is incorrect as it greatly overestimates the liquid amount. Choice D is incorrect as it also overestimates the liquid content in the pot.
5. A commuter survey counts the people riding in cars on a highway in the morning. Each car contains only one man, only one woman, or both one man and one woman. Out of 25 cars, 13 contain a woman and 20 contain a man. How many contain both a man and a woman?
- A. 4
- B. 7
- C. 8
- D. 13
Correct answer: C
Rationale: Let's denote the number of cars containing only a man as M, only a woman as W, and both a man and a woman as B. Given that there are 25 cars in total, we have: M + W + B = 25 From the information provided, we know that 13 cars contain a woman (W) and 20 cars contain a man (M). Since each car contains either one man, one woman, or both, the cars that contain both a man and a woman (B) are counted once in each of the M and W categories. Therefore, to find out how many cars contain both a man and a woman, we need to subtract the number of cars that contain only a man and only a woman from the total cars. M + B = 20 (as 20 cars contain a man) W + B = 13 (as 13 cars contain a woman) Solving the above two equations simultaneously, we get: M = 12, W = 5, B = 8 Therefore, 8 cars contain both a man and a woman. Hence, the correct answer is 8. Choice A, B, and D are incorrect as they do not reflect the correct calculation based on the information provided.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$49/ 30 days
- 3,000 Questions with answers
- 30 days access