the phone bill is calculated each month using the equation c 50 75d the cost of the phone bill per month is represented by c and d represents the gi
Logo

Nursing Elites

ATI TEAS 7

TEAS Math Practice Test

1. The phone bill is calculated each month using the equation C = 50 + 75D. The cost of the phone bill per month is represented by C, and D represents the gigabytes of data used that month. What is the value and interpretation of the slope of this equation?

Correct answer: A

Rationale: The slope of the equation C = 50 + 75D is 75. This means that for each additional gigabyte used (represented by D), the cost (represented by C) increases by 75 dollars. Therefore, the correct interpretation of the slope is that it is 75 dollars per gigabyte. Choice B, 75 gigabytes per day, is incorrect as the slope does not represent the rate of data usage per day. Choice C, 50 dollars per day, is incorrect as it does not reflect the relationship between gigabytes used and the cost. Choice D, 50 dollars per gigabyte, is incorrect as it does not match the slope value of 75 in the equation.

2. Express the solution to the following problem in decimal form:

Correct answer: C

Rationale: The correct answer is C: 0.84. To convert a percentage to a decimal, you divide the percentage value by 100. In this case, 84% divided by 100 equals 0.84. Choice A, 0.042, is not the correct conversion of 84%. Choice B, 84%, is already in percentage form and needs to be converted to a decimal. Choice D, 0.42, is not the correct conversion of 84% either. Therefore, the correct decimal form of 84% is 0.84.

3. A study divides patients into 3 groups with fractions: 1/2, 1/3, and 1/6. Which group has the largest number of patients?

Correct answer: A

Rationale: Group Alpha has the largest number of patients because it represents 1/2 of the total population, which is the highest fraction among the groups. Group Beta represents 1/3 of the population, and Group Gamma represents 1/6 of the population, making them smaller fractions in comparison. Group Delta is not mentioned in the question and is therefore unrelated to the comparison of the groups.

4. Jayden rides his bike for 5/8 miles. He takes a break and rides another 3/4 miles. How many miles does he ride?

Correct answer: A

Rationale: To find the total distance Jayden rides, you need to add the fractions 5/8 + 3/4. To add these fractions, you must ensure they have a common denominator. In this case, the common denominator is 8. So, 5/8 + 3/4 = 5/8 + 6/8 = 11/8. Since 11/8 can be simplified to 1 3/8, Jayden rides a total of 1 3/8 miles. Choice B (1 1/2 miles), Choice C (1 7/8 miles), and Choice D (2 miles) are incorrect as they do not accurately represent the total distance calculated by adding the two fractions, which is 1 3/8 miles.

5. Simplify the expression: 2x + 3x - 5.

Correct answer: A

Rationale: To simplify the expression 2𝑥 + 3𝑥 - 5, follow these steps: Identify and combine like terms. The terms 2𝑥 and 3𝑥 are both 'like terms' because they both contain the variable 𝑥. Add the coefficients of the like terms: 2𝑥 + 3𝑥 = 5𝑥. Simplify the expression. After combining the like terms, the expression becomes 5𝑥 - 5, which includes the simplified term 5𝑥 and the constant -5. Thus, the fully simplified expression is 5𝑥 - 5, making Option A the correct answer. This method ensures all terms are correctly simplified by combining similar elements and retaining constants.

Similar Questions

4.67 miles is equivalent to how many kilometers to three significant digits?
A charter bus driver drove at an average speed of 65 mph for 305 miles. If he stops at a gas station for 15 minutes, then drives another 162 miles at 80 mph, how long will it have been since he began the trip?
Solve for x: 4(2x - 6) = 10x - 6
What is the least common multiple? What is the least common factor?
What is 31% of 426?

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses