find the area in square centimeters of a circle with a diameter of 16 centimeters use 314 for
Logo

Nursing Elites

ATI TEAS 7

TEAS Test Math Questions

1. Find the area in square centimeters of a circle with a diameter of 16 centimeters. Use 3.14 for π.

Correct answer: D

Rationale: The formula for the area of a circle is: Area = π x (radius²). Given: Diameter = 16 cm, so Radius = Diameter / 2 = 16 / 2 = 8 cm. Now, calculate the area using π = 3.14: Area = 3.14 x (8²) = 3.14 x 64 = 200.96 cm². The correct answer is D (200.96 cm²) as it correctly calculates the area of the circle. Choices A, B, and C are incorrect as they do not represent the accurate area of the circle based on the given diameter and π value.

2. What is the probability of consecutively pulling two more orange blocks, without replacement, from a bag containing 3 orange blocks, 5 green blocks, and 4 purple blocks?

Correct answer: B

Rationale: To calculate the probability of consecutively pulling two more orange blocks without replacement, we first determine the probability of pulling an orange block on the first draw, which is 3/12 (3 orange blocks out of 12 total blocks). After removing one orange block, there are only 11 blocks left, so the probability of pulling another orange block on the second draw is 2/11. To find the combined probability, we multiply the probabilities together: (3/12) * (2/11) = 6/132 = 3/55. Therefore, the correct answer is B. Choice A (3/12) incorrectly simplifies the probability before calculating the second draw. Choice C (2/10) does not consider the specific number of orange blocks in the bag. Choice D (1/3) does not account for the reduced number of blocks after the first draw.

3. What is the area of the largest circle that can fit entirely inside a rectangle that measures 8 centimeters by 10 centimeters?

Correct answer: C

Rationale: The largest circle that can fit inside the rectangle would have a diameter of 8 cm, which means the radius is half of the diameter, thus 4 cm. The area of a circle is calculated using the formula A = πr², where r is the radius. Substituting the radius value into the formula, the area of the circle is π(4)² = 16π cm². Therefore, the correct answer is 16π cm². Choice A (18π cm²), B (10π cm²), and D (8π cm²) are incorrect because they do not represent the area of the largest circle that fits inside the given rectangle.

4. Complete the following equation: x + x * x - x / x = ?

Correct answer: B

Rationale: To solve the equation x + x * x - x / x, follow the order of operations (PEMDAS/BODMAS). First, perform the multiplication: x * x = x^2. Then, perform the division: x / x = 1. Substituting these back into the equation gives x + x^2 - 1. Therefore, the equation simplifies to x + x^2 - 1. By evaluating this further, the final result is 3. Choices A, C, and D are incorrect because they do not correctly apply the order of operations to solve the equation.

5. Which measure for the center of a small sample set would be most affected by outliers?

Correct answer: A

Rationale: The mean is calculated by summing all values in a dataset and then dividing by the total number of values. Outliers, which are data points significantly different from the other values, can greatly impact the mean because they affect the sum. The mean is sensitive to extreme values, making it the measure for the center of a small sample set most affected by outliers. The median, on the other hand, is not influenced by outliers as it represents the middle value when the data points are ordered. The mode is the value that appears most frequently in the dataset and is not directly influenced by outliers. Therefore, the correct answer is the mean, as it is highly influenced by outliers in a small sample set.

Similar Questions

Which of the following is the greatest value?
What is the product of two irrational numbers?
How will 0.80 be written as a percent?
Which of the following is the most likely weight of a pencil?
Solve for x: 3(x - 1) = 2(3x - 9)

Access More Features

ATI TEAS Premium Plus
$150/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses