which of the following measurements is the approximate metric equivalent of 7 inches
Logo

Nursing Elites

ATI TEAS 7

TEAS Practice Test Math

1. What is the approximate metric equivalent of 7 inches?

Correct answer: D

Rationale: The correct answer is D: 17.8 cm. To convert inches to centimeters, you can use the conversion factor 1 inch = 2.54 cm. Therefore, 7 inches is equal to 7 * 2.54 = 17.78 cm, which rounds to 17.8 cm. Choices A, B, and C are incorrect because they do not correspond to the correct conversion of 7 inches to centimeters.

2. Approximately how many people voted for the proposition if 9.5% of the town's population of 51,623 voted for it in a municipal election?

Correct answer: B

Rationale: To find the approximate number of people who voted for the proposition, multiply the town's population by the percentage that voted for it. 9.5% of 51,623 is about 0.095 * 51,623 ≈ 4,904. Rounded to the nearest thousand, this gives an estimate of 5,000 people. Therefore, choice B, '5,000,' is the correct answer. Choices A, C, and D are incorrect as they do not align with the calculated estimation.

3. A car dealership’s commercials claim that this year’s models are 20% off the list price, plus they will pay the first 3 monthly payments. If a car is listed for $26,580, and the monthly payments are set at $250, what is the total potential savings?

Correct answer: C

Rationale: To calculate the total potential savings: First, find the 20% discount on the list price of $26,580: 0.20 × $26,580 = $5,316. Then, determine the savings over the first 3 months of payments: 3 months × $250/month = $750. Add the discount and the monthly payment savings to get the total potential savings: $5,316 + $750 = $6,066. Therefore, the correct answer is $6,066. Choice A, $1,282, is incorrect because it does not account for the total savings from both the discount and the monthly payments. Choice B, $5,566, is incorrect as it miscalculates the total savings by excluding the savings from the monthly payments. Choice D, $20,514, is incorrect as it does not consider the discount and only focuses on the list price.

4. Solve the equation for the unknown. 3x + 2 = 20

Correct answer: C

Rationale: Simplify the equation step by step: Subtract 2 from both sides: 3x + 2 - 2 = 20 - 2 3x = 18 Divide both sides by 3: x = 18 ÷ 3 x = 6 Therefore, the correct answer is C (x = 6).

5. On a floor plan drawn at a scale of 1:100, the area of a rectangular room is 50 cm². What is the actual area of the room?

Correct answer: D

Rationale: The scale of 1:100 means that 1 cm² on the floor plan represents 100 cm² in real life. To find the actual area of the room, you need to multiply the area on the floor plan by the square of the scale factor. Since the scale is 1:100, the scale factor is 100. Therefore, 50 cm² on the floor plan represents 50 * 100 = 5000 cm² in real life. Choice A (500 m²) is incorrect as it converts the area from cm² to m² without considering the scale factor. Choice B (50 m²) is incorrect as it does not account for the scale factor. Choice C (5000 cm²) is incorrect as it gives the area on the floor plan, not the actual area.

Similar Questions

In Mrs. McConnell's classroom, there are 14 students with brown eyes and 2 students with green eyes. What is the ratio of students with brown eyes to students with green eyes?
What is the value of b in this equation? 5b - 4 = 2b + 17
Joshua is taking a test with 30 questions. To qualify for an academic scholarship, he needs to answer at least 80% of the questions correctly. What is the minimum number of questions Joshua must answer correctly to qualify for the scholarship?
What is the result of adding 1/6 and 1/2, expressed in reduced form?
Curtis is taking a road trip through Germany, where all distance signs are in metric. He passes a sign that states the city of Dusseldorf is 45 kilometers away. Approximately how far is this in miles?

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$49/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses