when the weights of the newborn babies are graphed the distribution of weights is symmetric with the majority of weights centered around a single peak
Logo

Nursing Elites

ATI TEAS 7

Practice Math TEAS TEST

1. When the weights of the newborn babies are graphed, the distribution of weights is symmetric with the majority of weights centered around a single peak. Which of the following describes the shape of this distribution?

Correct answer: C

Rationale: The correct answer is C: Bell-shaped. A symmetric distribution with a single peak is characteristic of a bell-shaped distribution, also known as a normal distribution. This distribution forms a symmetrical, bell-like curve when graphed. Choice A, 'Uniform,' would describe a distribution where all values have equal probability. Choice B, 'Bimodal,' would indicate a distribution with two distinct peaks. Choice D, 'Skewed right,' suggests a distribution where the tail on the right side is longer or more pronounced, unlike the symmetrical bell-shaped distribution described in the question.

2. What is the best estimate in meters for the average width of a doorway?

Correct answer: B

Rationale: The correct answer is B: 1. The average width of a doorway typically ranges from 0.8 to 1.2 meters, making 1 meter a reasonable estimate. Choice A (0.5) is too narrow for a standard doorway. Choice C (10) is too wide for a typical doorway. Choice D (3) is also wider than the standard width of a doorway.

3. If m represents a car’s average mileage in miles per gallon, p represents the price of gas in dollars per gallon, and d represents a distance in miles, which of the following algebraic equations represents the cost, c, of gas per mile?

Correct answer: B

Rationale: The cost of gas per mile, c, is calculated by dividing the price of gas, represented by p, by the car's average mileage, represented by m. Therefore, the correct equation is c = p/m. Choice A (dp/m) incorrectly multiplies the price of gas and distance, while choice C (mp/d) incorrectly multiplies the average mileage and price of gas. Choice D (m/p) incorrectly divides the average mileage by the price of gas, which does not represent the cost of gas per mile.

4. Robert plans to drive 1,800 miles. His car gets 30 miles per gallon, and his tank holds 12 gallons. How many tanks of gas will he need for the trip?

Correct answer: B

Rationale: To calculate how many gallons of gas Robert needs for the 1,800-mile trip, divide the total distance by the car's mileage per gallon: 1,800 miles ÷ 30 mpg = 60 gallons. Since his tank holds 12 gallons, Robert will need 60 gallons ÷ 12 gallons per tank = 5 tanks of gas for the trip. Choice A (4 tanks), Choice C (6 tanks), and Choice D (7 tanks) are incorrect as they do not correctly calculate the number of tanks needed based on the car's mileage and tank capacity.

5. If 1 inch on a map represents 60 ft, how many yards apart are two points if the distance between the points on the map is 10 inches?

Correct answer: B

Rationale: If 1 inch on the map represents 60 ft, then for 10 inches on the map, the actual distance would be 10 inches x 60 ft = 600 ft. To convert this to yards, we know that 1 yard equals 3 feet. Therefore, the distance between the two points is 600 ft / 3 ft/yard = 200 yards. Choice A (1800) is incorrect because it incorrectly multiplies by 10 again instead of converting to yards. Choice C (200) is incorrect because it fails to adjust the measurement from feet to yards. Choice D (2) is incorrect as it does not consider the correct conversion factor from feet to yards.

Similar Questions

How do you convert yards to feet, and feet to yards?
After a hurricane, donations were collected and divided into various categories. If 23% of the funds went towards construction costs, what is the percentage donated to support construction?
A patient requires a 30% decrease in their medication dosage. Their current dosage is 340 mg. What will their dosage be after the decrease?
Simplify the following expression: 13 - 3/22 - 11
Simplify (x^2 - y^2) / (x - y)

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$1/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses