ATI TEAS 7
Math Practice TEAS Test
1. Histograms use ________, and bar graphs do not.
- A. Ranges
- B. Categories
- C. Labels
- D. Percentages
Correct answer: A
Rationale: Correct Answer: Ranges. Histograms utilize ranges (intervals) to display the frequency distribution of continuous data, highlighting the frequency of values falling within each interval. Bar graphs, on the other hand, represent discrete data using separate and distinct bars to show comparisons between different categories or groups. Choice B (Categories) is incorrect because both histograms and bar graphs can display data based on categories, but histograms use ranges to group continuous data. Choice C (Labels) is incorrect as both types of graphs can have labels to provide context and information. Choice D (Percentages) is incorrect because percentages can be used in both histograms and bar graphs to show proportions, but they are not a defining feature that distinguishes histograms from bar graphs.
2. Which of the following best describes the data set below? 1, 1, 2, 2, 2, 2, 3, 3, 7, 7, 8, 8, 8, 8, 9, 9
- A. Uniform
- B. Right-skewed
- C. Bimodal
- D. Left-skewed
Correct answer: C
Rationale: The correct answer is C: Bimodal. A bimodal distribution has two distinct peaks or modes. In this data set, the numbers 2 and 8 appear more frequently than other numbers, creating two modes (2 and 8). Choices A, B, and D are incorrect. Option A, 'Uniform,' describes a distribution where all values have equal frequency, which is not the case in this data set. Options B and D, 'Right-skewed' and 'Left-skewed,' refer to distributions where the data is skewed towards one side, which is not observed in this dataset. Therefore, the data set is best described as bimodal.
3. Simplify the expression: 2x + 3x - 5.
- A. 5x - 5
- B. 5x
- C. x - 5
- D. 2x - 5
Correct answer: A
Rationale: To simplify the expression 2π₯ + 3π₯ - 5, follow these steps: Identify and combine like terms. The terms 2π₯ and 3π₯ are both 'like terms' because they both contain the variable π₯. Add the coefficients of the like terms: 2π₯ + 3π₯ = 5π₯. Simplify the expression. After combining the like terms, the expression becomes 5π₯ - 5, which includes the simplified term 5π₯ and the constant -5. Thus, the fully simplified expression is 5π₯ - 5, making Option A the correct answer. This method ensures all terms are correctly simplified by combining similar elements and retaining constants.
4. Express as an improper fraction: 8 3/7
- A. 11/7
- B. 21/8
- C. 5/3
- D. 59/7
Correct answer: D
Rationale: To convert the mixed number 8 3/7 to an improper fraction, multiply the whole number (8) by the denominator (7) and add the numerator (3) to get the numerator of the improper fraction. This gives us (8*7 + 3) / 7 = 59/7. Therefore, the correct answer is 59/7. Choice A (11/7), choice B (21/8), and choice C (5/3) are incorrect because they do not correctly convert the mixed number to an improper fraction.
5. What is an exponent?
- A. A number that tells how many times to multiply
- B. A number that is multiplied
- C. A number that divides evenly into another number
- D. A number that represents the square of a number
Correct answer: A
Rationale: An exponent is a number that indicates how many times a base number is multiplied by itself. The correct answer (A) accurately defines an exponent as a multiplier that shows how many times a number should be multiplied by itself. Choice B is incorrect as it describes a factor rather than an exponent. Choice C is incorrect as it defines a divisor, not an exponent. Choice D is incorrect as it specifically refers to the square of a number, which is not a general definition of an exponent.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access