perform the operation 3x 5x 2
Logo

Nursing Elites

ATI TEAS 7

TEAS Test Math Questions

1. Simplify the expression 3x - 5x + 2.

Correct answer: D

Rationale: When simplifying the expression 3x - 5x + 2, start by combining like terms. -5x is subtracted from 3x to give -2x. Adding 2 at the end gives the simplified expression -2x. Therefore, the correct answer is -2x. Choice A, -2x + 2, incorrectly adds 2 at the end. Choice B, -8x, incorrectly combines the coefficients of x without considering the constant term. Choice C, 2x + 2, incorrectly adds the coefficients of x without simplifying.

2. What is the sum of 3/8 and 5/8?

Correct answer: A

Rationale: To find the sum of fractions, add the numerators if the denominators are the same. Here, 3/8 + 5/8 = (3+5)/8 = 8/8 = 1. Therefore, the correct answer is A. Choices B, C, and D are incorrect because they do not represent the correct sum of the fractions provided in the question.

3. If a car travels 150 miles in 3 hours, what is the car's average speed in miles per hour?

Correct answer: B

Rationale: To calculate the average speed, use the formula: Average speed = Total distance / Total time. In this case, Average speed = 150 miles / 3 hours = 50 mph. Therefore, the car's average speed is 50 miles per hour. Choice A (45 mph), Choice C (55 mph), and Choice D (60 mph) are incorrect as they do not match the correct calculation based on the given distance and time values.

4. A charter bus driver drove at an average speed of 65 mph for 305 miles. If he stops at a gas station for 15 minutes, then drives another 162 miles at an average speed of 80 mph, how long will it have been since he began the trip?

Correct answer: D

Rationale: To find the total time, we first calculate the time taken for the first leg of the trip by dividing the distance of 305 miles by the speed of 65 mph, which equals 4.69 hours. After that, we add the 15 minutes spent at the gas station, which is 0.25 hours. Next, we calculate the time taken for the second leg of the trip by dividing the distance of 162 miles by the speed of 80 mph, which equals 2.03 hours. Adding these times together (4.69 hours + 0.25 hours + 2.03 hours) gives us a total time of 6.97 hours. Therefore, it will have been 6.97 hours since the driver began the trip. Choice A is incorrect as it does not account for the time spent driving the second leg of the trip. Choice B is incorrect as it only considers the time for the first leg of the trip and the time spent at the gas station. Choice C is incorrect as it misses the time taken for the second leg of the trip.

5. Margery is planning a vacation, and her round-trip airfare will cost $572. Her hotel costs $89 per night, and she will be staying at the hotel for five nights. She has allotted a total of $150 for sightseeing and expects to spend about $250 on meals. She will receive a 10% discount on the hotel price after the first night. What is the total amount Margery expects to spend on her vacation?

Correct answer: C

Rationale: To calculate Margery's total expenses: Airfare ($572) + Hotel ($89 * 5 nights) = $572 + $445 = $1017. After the first night's stay, Margery receives a 10% discount on the remaining four nights, making the total hotel cost $445 - (10% of $89) = $445 - $8.90 = $436.10. Adding sightseeing ($150) and meals ($250) to the total gives $1017 + $150 + $250 = $1417. Margery's expected expenses are $1417, not $1381.40 as stated in the original rationale. Therefore, the correct answer is $1,417.60 (Option D).

Similar Questions

Which of the following describes a real-world situation that could be modeled by?
Using the chart below, which equation describes the relationship between x and y?
How much did he save from the original price?
A charter bus driver drove at an average speed of 65 mph for 305 miles. If he stops at a gas station for 15 minutes, then drives another 162 miles at 80 mph, how long will it have been since he began the trip?
Which statement best describes the rate of change?

Access More Features

ATI TEAS Premium Plus
$150/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses