perform the operation 3x 5x 2
Logo

Nursing Elites

ATI TEAS 7

TEAS Test Math Questions

1. Simplify the expression 3x - 5x + 2.

Correct answer: D

Rationale: When simplifying the expression 3x - 5x + 2, start by combining like terms. -5x is subtracted from 3x to give -2x. Adding 2 at the end gives the simplified expression -2x. Therefore, the correct answer is -2x. Choice A, -2x + 2, incorrectly adds 2 at the end. Choice B, -8x, incorrectly combines the coefficients of x without considering the constant term. Choice C, 2x + 2, incorrectly adds the coefficients of x without simplifying.

2. Simplify the expression. Which of the following is correct? (52(3) + 3(-2)^2 / 4 + 3^2 - 2(5 - 8))

Correct answer: B

Rationale: To simplify the expression, apply the order of operations (PEMDAS). Begin by squaring -2 to get 4. Then perform the multiplication and subtraction within parentheses: 52(3) + 3(4)/4 + 9 - 2(5 - 8) = 156 + 12/4 + 9 - 2(3) = 156 + 3 + 9 - 6 = 168 + 3 - 6 = 171 - 6 = 165. Therefore, the correct simplified expression is 165, which is equivalent to 87/19. Choices A, C, and D are incorrect because they do not represent the accurate simplification of the given expression.

3. What is the formula for the area of a circle?

Correct answer: A

Rationale: The correct formula for the area of a circle is A = πr², where π is a mathematical constant approximately equal to 3.14159 and r is the radius of the circle. Choice B, A = 2πr, represents the circumference of a circle, not the area. Choice C, A = πd, incorrectly uses the diameter (d) instead of the radius in the formula for area. Choice D, A = 2πd, is also related to the circumference of the circle, not the area. Therefore, option A is the only correct formula for calculating the area of a circle.

4. A charter bus driver drove at an average speed of 65 mph for 305 miles. If he stops at a gas station for 15 minutes, then drives another 162 miles at an average speed of 80 mph, how long will it have been since he began the trip?

Correct answer: D

Rationale: To find the total time, we first calculate the time taken for the first leg of the trip by dividing the distance of 305 miles by the speed of 65 mph, which equals 4.69 hours. After that, we add the 15 minutes spent at the gas station, which is 0.25 hours. Next, we calculate the time taken for the second leg of the trip by dividing the distance of 162 miles by the speed of 80 mph, which equals 2.03 hours. Adding these times together (4.69 hours + 0.25 hours + 2.03 hours) gives us a total time of 6.97 hours. Therefore, it will have been 6.97 hours since the driver began the trip. Choice A is incorrect as it does not account for the time spent driving the second leg of the trip. Choice B is incorrect as it only considers the time for the first leg of the trip and the time spent at the gas station. Choice C is incorrect as it misses the time taken for the second leg of the trip.

5. What must you always use in all math?

Correct answer: A

Rationale: The correct answer is A: PEMDAS. PEMDAS stands for the order of operations: Parentheses, Exponents, Multiplication and Division (left to right), Addition and Subtraction (left to right). It is a fundamental rule to follow in mathematics to ensure calculations are done correctly. Choices B, C, and D are incorrect as they do not encompass the essential rule that PEMDAS provides for solving mathematical expressions.

Similar Questions

What is the least common denominator for the fractions below? 1/2, 2/3, 4/5
What is the mean for the data set 16, 18, 17, 15, 19, 14, 12, 11, 10, 16, 18, and 17?
In a graph that shows the number of nurses in various specialties, what is the independent variable?
There are 20 mg of acetaminophen in concentrated infant drops. If the proper dosage for a four-year-old child is 240 mg, how many milliliters should the child receive?
Jonathan pays a $65 monthly flat rate for his cell phone. He is charged $0.12 per minute for each minute used in a roaming area. Which of the following expressions represents his monthly bill for x roaming minutes?

Access More Features

ATI TEAS Premium Plus
$150/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses