perform the operation 3x 5x 2
Logo

Nursing Elites

ATI TEAS 7

TEAS Test Math Questions

1. Simplify the expression 3x - 5x + 2.

Correct answer: D

Rationale: When simplifying the expression 3x - 5x + 2, start by combining like terms. -5x is subtracted from 3x to give -2x. Adding 2 at the end gives the simplified expression -2x. Therefore, the correct answer is -2x. Choice A, -2x + 2, incorrectly adds 2 at the end. Choice B, -8x, incorrectly combines the coefficients of x without considering the constant term. Choice C, 2x + 2, incorrectly adds the coefficients of x without simplifying.

2. A patient requires a 30% increase in the dosage of their medication. Their current dosage is 270 mg. What will their dosage be after the increase?

Correct answer: D

Rationale: To calculate a 30% increase from the current dosage of 270 mg, first find 30% of 270, which is 81 mg. Add this 81 mg increase to the original dosage of 270 mg to get the new dosage, which is 351 mg (270 mg + 81 mg = 351 mg). Therefore, the correct answer is 351 mg. Choice A (81 mg) is incorrect because this value represents only the calculated 30% increase, not the total dosage after the increase. Choice B (270 mg) is the original dosage and does not account for the 30% increase. Choice C (300 mg) is close to the correct answer but does not consider the precise 30% increase calculation, leading to an incorrect total dosage.

3. If x represents the width of a rectangle and the length is six less than two times the width, which of the following expressions represents the length of the rectangle in terms of x?

Correct answer: A

Rationale: To find the expression representing the length of the rectangle in terms of x, we need to consider that the length is six less than two times the width. If we denote the width as x, the length can be expressed as 2x - 6. Therefore, the correct expression is 2x-6 (choice A). Choice B, 6-2x, represents the width subtracted from 6, not the length. Choice C, 6x-2, is not derived from the given information about the relationship between the width and length. Choice D, 3x-4, is not consistent with the relationship provided in the question.

4. Jessica buys 10 cans of paint. Red paint costs $1 per can, and blue paint costs $2 per can. In total, she spends $16. How many red cans did she buy?

Correct answer: C

Rationale: Let r be the number of red cans and b be the number of blue cans. The total cans equation is r + b = 10. The total cost equation is r + 2b = 16. By solving these equations simultaneously, we find r = 4. Therefore, Jessica bought 4 red cans. Choice A, 2 red cans, is incorrect because it does not satisfy the total cans or total cost condition. Choices B and D are also incorrect as they do not fulfill both conditions simultaneously.

5. What is the product of two irrational numbers?

Correct answer: C

Rationale: The correct answer is C: 'Irrational or rational.' When you multiply two irrational numbers, the result can be either irrational or rational. For example, multiplying the square root of 2 (√2) by itself results in the rational number 2. This shows that the product of two irrational numbers can lead to a rational result. Choices A, B, and D are incorrect because the product of two irrational numbers is not limited to being irrational; it can also be rational.

Similar Questions

Simplify the following expression: (2/7) ÷ (5/6)
Half of a circular garden with a radius of 11.5 feet needs weeding. Find the area in square feet that needs weeding. Round to the nearest hundredth. Use 3.14 for π.
The phone bill is calculated each month using the equation C = 50 + 75D. The cost of the phone bill per month is represented by C, and D represents the gigabytes of data used that month. What is the value and interpretation of the slope of this equation?
Which of the following is the greatest value?
A circle has an area of 121π in². Which of the following is the circumference of the circle in terms of pi (π)?

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$49/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses