perform the operation 3x 5x 2
Logo

Nursing Elites

ATI TEAS 7

TEAS Test Math Questions

1. Simplify the expression 3x - 5x + 2.

Correct answer: D

Rationale: When simplifying the expression 3x - 5x + 2, start by combining like terms. -5x is subtracted from 3x to give -2x. Adding 2 at the end gives the simplified expression -2x. Therefore, the correct answer is -2x. Choice A, -2x + 2, incorrectly adds 2 at the end. Choice B, -8x, incorrectly combines the coefficients of x without considering the constant term. Choice C, 2x + 2, incorrectly adds the coefficients of x without simplifying.

2. Gordon purchased a television that was 30% off its original price of $472. What was the sale price?

Correct answer: D

Rationale: To find the sale price after a 30% discount, you first calculate the discount amount which is 30% of $472. 30% of $472 is $141.60. To find the sale price, you subtract the discount amount from the original price: $472 - $141.60 = $330.40. Therefore, the sale price of the television after a 30% discount would be $330.40. Choices A, B, and C are incorrect as they do not accurately reflect the calculated sale price after the discount.

3. What is the sum of two odd numbers, two even numbers, and an odd number and an even number?

Correct answer: A

Rationale: The sum of two odd numbers is even because odd numbers have a difference of 1 and adding them results in a multiple of 2. The sum of two even numbers is even because even numbers are multiples of 2. When an odd number and an even number are added, the result is odd because the even number contributes an extra 1 to the sum, making it an odd number. Therefore, the correct answer is A. Choices B, C, and D have incorrect combinations of the sum of odd and even numbers.

4. A certain exam has 30 questions. A student gets 1 point for each question answered correctly and loses half a point for each question answered incorrectly; no points are gained or lost for questions left blank. If x represents the number of questions a student answers correctly and y represents the number of questions left blank, which of the following expressions represents the student's score on the exam?

Correct answer: A

Rationale: The student's score is calculated by adding the points earned for correct answers (x) and subtracting the points lost for incorrect answers (y/2). Therefore, the expression for the student's score on the exam is x - y/2. Option A is correct because it accurately represents this calculation. Option B (x - y) is incorrect as it does not account for the penalty of losing half a point for each incorrect answer. Option C (30 - (x + y)) is incorrect as it subtracts the total number of questions from the sum of correct and blank answers, which does not represent the scoring system. Option D (30 - x - y/2) is also incorrect as it incorrectly subtracts x from 30 and then deducts y divided by 2, which is not the correct scoring method for the exam.

5. Approximately how many people voted for the proposition if 9.5% of the town's population of 51,623 voted for it in a municipal election?

Correct answer: B

Rationale: To find the approximate number of people who voted for the proposition, multiply the town's population by the percentage that voted for it. 9.5% of 51,623 is about 0.095 * 51,623 ≈ 4,904. Rounded to the nearest thousand, this gives an estimate of 5,000 people. Therefore, choice B, '5,000,' is the correct answer. Choices A, C, and D are incorrect as they do not align with the calculated estimation.

Similar Questions

A recipe calls for 5.5 teaspoons of vanilla. 1 teaspoon equals approximately 4.93 mL. Which of the following is the correct amount of vanilla in mL?
What defines rational and irrational numbers?
What is the estimated total amount of money the roommates used to purchase the gift?
Solve for x: 2x + 6 = 14
Cora skated around the rink 27 times but fell 20 times. What percentage of the time did she not fall?

Access More Features

ATI TEAS Premium Plus
$150/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses