ATI TEAS 7
TEAS Test Math Questions
1. Simplify the expression 3x - 5x + 2.
- A. -2x + 2
- B. -8x
- C. 2x + 2
- D. -2x
Correct answer: D
Rationale: When simplifying the expression 3x - 5x + 2, start by combining like terms. -5x is subtracted from 3x to give -2x. Adding 2 at the end gives the simplified expression -2x. Therefore, the correct answer is -2x. Choice A, -2x + 2, incorrectly adds 2 at the end. Choice B, -8x, incorrectly combines the coefficients of x without considering the constant term. Choice C, 2x + 2, incorrectly adds the coefficients of x without simplifying.
2. What percentage of the total rainfall in this timeframe occurs during October?
- A. 0.135
- B. 0.151
- C. 0.169
- D. 0.177
Correct answer: B
Rationale: To calculate the percentage of rainfall that occurs during October, divide October's rainfall (4.5 inches) by the total rainfall (29.38 inches) and multiply by 100. So, (4.5 / 29.38) * 100 = 15.31%. Among the choices given, option B, 0.151, is the closest to this calculated percentage. Options A, C, and D are not correct as they do not match the accurate calculation based on the provided data.
3. At the beginning of the day, Xavier has 20 apples. At lunch, he meets his sister Emma and gives her half of his apples. After lunch, he stops by his neighbor Jim's house and gives him 6 of his apples. He then uses ¾ of his remaining apples to make an apple pie for dessert at dinner. At the end of the day, how many apples does Xavier have left?
- A. 4
- B. 6
- C. 2
- D. 1
Correct answer: D
Rationale: Xavier starts with 20 apples. He gives half to Emma, leaving him with 10 apples. After giving 6 more to Jim, he has 4 apples left. Using ¾ of the remaining 4 apples for the pie leaves him with 1 apple at the end of the day. Choice A is incorrect because it doesn't account for the apple pie Xavier made. Choices B and C are incorrect as they don't reflect the correct calculations of apples remaining after each step.
4. Which of the following statements is true?
- A. The mean is less than the median
- B. The mode is greater than the median
- C. The mode is less than the mean, median, and range
- D. The mode is equal to the range
Correct answer: A
Rationale: The mean is the average of a set of numbers, while the median is the middle value when the numbers are arranged in order. If a set of numbers is skewed to one side with some outliers, the mean can be influenced by these extreme values, causing it to be greater or less than the median. In cases of skewed distribution, the mean typically shifts towards the direction of the outliers, making it less than the median. Choice B is incorrect because the mode, which is the most frequent number in a dataset, may or may not be greater than the median. Choice C is incorrect because the mode can be greater than the mean or median, depending on the data. Choice D is incorrect because the mode, representing the most frequent value, has no direct relationship with the range, which is the difference between the highest and lowest values in a dataset.
5. Solve |x| = 10.
- A. -10, 10
- B. -11, 11
- C. -12, 12
- D. -13, 13
Correct answer: A
Rationale: The absolute value of x is equal to 10 when x is either -10 or 10. Therefore, the correct answer is A. Choices B, C, and D are incorrect because they do not satisfy the equation |x| = 10. For choice B, -11 and 11 do not satisfy the condition. Choices C and D also do not provide solutions that meet the equation's requirement.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access