which of the following is the median of the data set below 5 3 10 2 0
Logo

Nursing Elites

ATI TEAS 7

Practice Math TEAS TEST

1. What is the median of the data set below: 5, -3, 10, -2, 0?

Correct answer: B

Rationale: To find the median, we first need to arrange the data set in ascending order: -3, -2, 0, 5, 10. The median is the middle value in the ordered set. As there are 5 numbers, the middle value is the third number, which is 0. Therefore, the correct answer is 0. Choice A (10) and Choice D (2) are not correct because they are not the middle values once the data set is ordered. Choice C (5) is also incorrect as it is not the middle value in the ordered data set.

2. A can has a radius of 1.5 inches and a height of 3 inches. Which of the following best represents the volume of the can?

Correct answer: C

Rationale: The volume of a cylinder is calculated using the formula V = πr²h, where r is the radius and h is the height. Substituting the given values (r = 1.5 inches, h = 3 inches) into the formula yields V ≈ 21.2 in³. Therefore, the correct answer is C. Choice A, 17.2 in³, is incorrect as it does not correspond to the correct calculation. Choice B, 19.4 in³, is also incorrect and does not match the calculated volume. Choice D, 23.4 in³, is not the correct volume obtained when using the provided dimensions in the formula for the volume of a cylinder.

3. How much did he save from the original price?

Correct answer: B

Rationale: To calculate the amount saved from the original price, you need to subtract the discounted price from the original price. The formula is: Original price - Discounted price = Amount saved. In this case, the original price was $850, and the discounted price was $637.50. Therefore, $850 - $637.50 = $212.50. Hence, he saved $212.50 from the original price. Choice A ($170) is incorrect as it is not the correct amount saved. Choice C ($105.75) is incorrect as it does not match the calculated savings. Choice D ($200) is incorrect as it is not the accurate amount saved based on the given prices.

4. Half of a circular garden with a radius of 11.5 feet needs weeding. Find the area in square feet that needs weeding. Round to the nearest hundredth. Use 3.14 for π.

Correct answer: B

Rationale: The formula for the area of a full circle is calculated as Area = π × (radius²). When finding the area of half a circle, we multiply by 0.5. Thus, the formula becomes Area = 0.5 × π × (radius²). Given that the radius of the circular garden is 11.5 feet, the calculation using π = 3.14 is as follows: Area = 0.5 × 3.14 × (11.5²) = 0.5 × 3.14 × 132.25 = 0.5 × 415.27 = 207.64 square feet. Therefore, the correct answer is B. Choices A, C, and D are incorrect because they do not reflect the correct calculation for finding the area of half a circular garden with a radius of 11.5 feet.

5. The total perimeter of a rectangle is 36 cm. If the length of each side is 12 cm, what is the width?

Correct answer: C

Rationale: The formula for the perimeter of a rectangle is P = 2(l + w), where P is the perimeter, l is the length, and w is the width. Given that the total perimeter is 36 cm and each side's length is 12 cm, we substitute the values into the formula: 36 = 2(12 + w). Solving for w gives us w = 6. Therefore, the width of the rectangle is 6 cm. Choice A (3 cm) is incorrect because the width is not half of the length. Choice B (12 cm) is the length, not the width. Choice D (8 cm) is incorrect as it does not match the calculated width of 6 cm.

Similar Questions

In Mrs. McConnell's classroom, there are 5 students with hazel eyes and 2 students with green eyes out of a total of 30 students. What percentage of the students have either hazel or green eyes?
What score must Dwayne get on his next math test to maintain an overall average of at least 90?
A gift box has a length of 14 inches, a height of 8 inches, and a width of 6 inches. How many square inches of wrapping paper are needed to wrap the box?
What is the approximate metric equivalent of 7 inches?
What is the result of adding 7/8 and 5/8 and expressing the sum in reduced form?

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses