ATI TEAS 7
TEAS Test Math Prep
1. Express the solution to the following problem in decimal form:
- A. 0.042
- B. 84%
- C. 0.84
- D. 0.42
Correct answer: C
Rationale: The correct answer is C: 0.84. To convert a percentage to a decimal, you divide the percentage value by 100. In this case, 84% divided by 100 equals 0.84. Choice A, 0.042, is not the correct conversion of 84%. Choice B, 84%, is already in percentage form and needs to be converted to a decimal. Choice D, 0.42, is not the correct conversion of 84% either. Therefore, the correct decimal form of 84% is 0.84.
2. What is the result of (4.71 × 10^3) - (2.98 × 10^2)? Which of the following is the correct simplified expression?
- A. 1.73 × 10
- B. 4.412 × 10^2
- C. 1.73 × 10^3
- D. 4.412 × 10^3
Correct answer: D
Rationale: The correct answer is D: 4.412 × 10^3. To simplify the expression, rewrite 4.71 × 10^3 as 47.1 × 10^2. Subtract the values in front of 10^2: 47.1 - 2.98 = 44.12. Rewriting this gives 44.12 × 10^2 = 4.412 × 10^3. Choice A is incorrect as it does not account for the correct subtraction result. Choice B is incorrect as it does not correctly simplify the expression. Choice C is incorrect as it provides an incorrect power of 10 in the simplified expression.
3. What is the percentage equivalent of 0.0016?
- A. 16%
- B. 160%
- C. 1.60%
- D. 0.16%
Correct answer: D
Rationale: To convert a decimal to a percentage, you multiply by 100. Therefore, to find the percentage equivalent of 0.0016, you would multiply 0.0016 by 100 to get 0.16%. This means that choice D, '0.16%', is the correct answer. Choices A, B, and C are incorrect because they do not correctly represent the percentage equivalent of 0.0016.
4. During week 1, Cameron worked 5 shifts. During week 2, she worked twice as many shifts. During week 3, she added 4 more shifts. How many shifts did Cameron work in week 3?
- A. 15 shifts
- B. 14 shifts
- C. 16 shifts
- D. 17 shifts
Correct answer: B
Rationale: To find out how many shifts Cameron worked in week 3, we first determine the shifts worked in weeks 1 and 2. In week 1, Cameron worked 5 shifts. In week 2, she worked twice as many shifts, which is 5 x 2 = 10 shifts. Adding the 4 more shifts in week 3, the total shifts worked in week 3 would be 5 (week 1) + 10 (week 2) + 4 (week 3) = 19 shifts. Therefore, the correct answer is 14 shifts (Option B), not 15 shifts (Option A), 16 shifts (Option C), or 17 shifts (Option D).
5. Apply the polynomial identity to rewrite (a + b)².
- A. a² + b²
- B. 2ab
- C. a² + 2ab + b²
- D. a² - 2ab + b²
Correct answer: C
Rationale: When you see something like (a + b)², it means you're multiplying (a + b) by itself: (a + b)² = (a + b) × (a + b) To expand this, we use the distributive property (which says you multiply each term in the first bracket by each term in the second bracket): Multiply the first term in the first bracket (a) by both terms in the second bracket: a × a = a² a × b = ab Multiply the second term in the first bracket (b) by both terms in the second bracket: b × a = ab b × b = b² Now, add up all the results from the multiplication: a² + ab + ab + b² Since ab + ab is the same as 2ab, we can simplify it to: a² + 2ab + b² So, (a + b)² = a² + 2ab + b². This is known as a basic polynomial identity, and it shows that when you square a binomial (a two-term expression like a + b), you get three terms: the square of the first term (a²), twice the product of the two terms (2ab), and the square of the second term (b²). Therefore, the correct answer is C (a² + 2ab + b²)
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access