ATI TEAS 7
TEAS Exam Math Practice
1. 4 − 1/(22) + 24 ÷ (8 + 12). Simplify the expression. Which of the following is correct?
- A. 1.39
- B. 2.74
- C. 4.95
- D. 15.28
Correct answer: C
Rationale: First, complete the operations in parentheses: 4 − (1/22) + 24 ÷ 20. Next, simplify the exponents: 4 − (1/22) + 24 ÷ 20 = 4 − (1/4) + 24 ÷ 20. Then, complete multiplication and division operations: 4 − (1/4) + 24 ÷ 20 = 4 − 0.25 + 1.2. Finally, complete addition and subtraction operations: 4 − 0.25 + 1.2 = 4.95. Choice A, 1.39, is incorrect as it does not match the correct calculation. Choice B, 2.74, is incorrect as it is not the result of the given expression. Choice D, 15.28, is incorrect as it is not the correct simplification of the initial expression.
2. The graph below represents the amount of rainfall in a particular state by month. What is the total rainfall for the months May, June, and July?
- A. 9.0 inches
- B. 8.4 inches
- C. 7.5 inches
- D. 10.5 inches
Correct answer: A
Rationale: To calculate the total rainfall for May, June, and July, we add the rainfall amounts for each month: 3.2 inches (May) + 2.5 inches (June) + 3.3 inches (July) = 9.0 inches. Therefore, the correct answer is A. Choice B (8.4 inches) is incorrect as it does not account for the correct sum of rainfall for the specified months. Choice C (7.5 inches) is incorrect as it does not include the accurate total rainfall for May, June, and July. Choice D (10.5 inches) is incorrect as it provides a total that exceeds the actual combined rainfall for the given months.
3. If you pull an orange block from a bag of 3 orange, 5 green, and 4 purple blocks, what is the probability of consecutively pulling two more orange blocks without replacement?
- A. 1/12
- B. 3/55
- C. 1/55
- D. 2/33
Correct answer: B
Rationale: To calculate the probability of pulling two more orange blocks consecutively without replacement after the initial orange block is pulled, we need to multiply the probabilities. After the first orange block is pulled, there are 2 orange blocks left out of a total of 11 blocks remaining. So, the probability of pulling a second orange block is 2/11. Therefore, the overall probability is (3/12) * (2/11) = 3/55. Choice A (1/12) is incorrect because it only considers the probability of the first orange block being pulled. Choice C (1/55) is incorrect as it represents the probability of pulling two orange blocks in a row, not the consecutive pulls after the initial pull. Choice D (2/33) is incorrect as it does not reflect the correct calculation for the consecutive pulls of orange blocks.
4. Which is bigger, a mile or a kilometer? What's the conversion factor?
- A. Mile is bigger; 1 mile is 1.609 km
- B. Kilometer is bigger; 1 km is 1.609 miles
- C. Mile is bigger; 1 mile is 1.5 km
- D. Kilometer is bigger; 1 km is 2 miles
Correct answer: A
Rationale: A mile is bigger than a kilometer. The correct conversion factor is 1 mile = 1.609 km. This means that one mile is equivalent to approximately 1.609 kilometers. Choice B is incorrect because a mile is bigger than a kilometer, and the conversion is not 1 km = 1.609 miles. Choice C is incorrect as the conversion factor provided is inaccurate; 1 mile is not equal to 1.5 km. Choice D is incorrect as it states that a kilometer is bigger, which is not true according to the actual conversion factor.
5. Solve the system of equations. Equation 1: 2x + y = 0 Equation 2: x - 2y = 8
- A. (1.8, 3.6) and (-1.8, -3.6)
- B. (1.8, -3.6) and (-1.8, 3.6)
- C. (1.3, 2.6) and (-1.3, -2.6)
- D. (-1.3, 2.6) and (1.3, -2.6)
Correct answer: B
Rationale: From Equation 1: 2x + y = 0. Solve for y: y = -2x. Substitute y = -2x into Equation 2: x - 2(-2x) = 8. Simplify to x + 4x = 8, then 5x = 8, and x = 8 ÷ 5 = 1.6. Substitute x = 1.6 back into y = -2x to find y = -3.2. Therefore, one solution is (1.6, -3.2). To find the second solution, use -1.6 for x to get (-1.6, 3.2). Thus, the correct answer is B, representing the solutions (1.8, -3.6) and (-1.8, 3.6). Choices A, C, and D contain incorrect values that do not match the solutions derived from solving the system of equations.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$49/ 30 days
- 3,000 Questions with answers
- 30 days access