ATI TEAS 7
Practice Math TEAS TEST
1. What is the length of the unknown leg of a right triangle that has one leg measuring 9 feet and a hypotenuse of 19 feet? (Round to the nearest tenth.)
- A. 16.7 feet
- B. 16.0 feet
- C. 17.4 feet
- D. 8.4 feet
Correct answer: A
Rationale: To find the length of the unknown leg (a) of a right triangle, use the Pythagorean theorem: a² + 9² = 19². Substitute the known values, solve for a: a² + 81 = 361. Subtract 81 from both sides to get a² = 280. Taking the square root of 280 gives a ≈ 16.7 feet. Therefore, the correct answer is 16.7 feet. Choice B (16.0 feet) is incorrect as it does not accurately round to the nearest tenth. Choice C (17.4 feet) and choice D (8.4 feet) are incorrect as they do not match the calculated value using the Pythagorean theorem.
2. Solve for x: 3(x + 4) = 18
- A. x = 2
- B. x = 4
- C. x = 6
- D. x = 8
Correct answer: C
Rationale: To solve the equation 3(x + 4) = 18, first distribute the 3 to both terms inside the parentheses: 3x + 12 = 18. Next, isolate the variable x by subtracting 12 from both sides: 3x = 6. Finally, divide by 3 to solve for x, giving x = 6. Choice A, x = 2, is incorrect as the correct solution is x = 6. Choices B (x = 4) and D (x = 8) are also incorrect as they do not satisfy the given equation.
3. How do you find the radius of a circle when given the diameter? How do you find the radius of a circle when given the circumference?
- A. Radius = Diameter ÷ 2; Radius = Circumference ÷ 2π
- B. Radius = Diameter ÷ 3; Radius = Circumference ÷ π
- C. Radius = Diameter × 2; Radius = Circumference × 2π
- D. Radius = Diameter ÷ 4; Radius = Circumference ÷ π
Correct answer: A
Rationale: The correct way to find the radius of a circle when given the diameter is by dividing the diameter by 2 to get the radius (Radius = Diameter ÷ 2). When given the circumference, you need to divide the circumference by 2π to find the radius (Radius = Circumference ÷ 2π). Choice A provides the accurate formulas for finding the radius in both scenarios. Choices B, C, and D present incorrect formulas that do not align with the correct calculations for determining the radius of a circle based on the given information.
4. Which statement about multiplication and division is true?
- A. The product of the quotient and the dividend is the divisor.
- B. The product of the dividend and the divisor is the quotient.
- C. The product of the quotient and the divisor is the dividend.
- D. None of the above.
Correct answer: C
Rationale: In division, the dividend is the number being divided, the divisor is the number you are dividing by, and the quotient is the result. Multiplying the quotient by the divisor gives the original dividend. This is the reverse of the division operation. Therefore, the correct statement is that the product of the quotient and the divisor equals the dividend, making option C correct. Choices A and B provide incorrect relationships between the terms dividend, divisor, quotient, and product, making them inaccurate. Option D is a general statement that does not provide the correct relationship between multiplication and division terms.
5. Write 290% as a fraction.
- A. 29/10
- B. 58/20
- C. 145/50
- D. 290/100
Correct answer: D
Rationale: To convert a percentage to a fraction, you write the percentage as the numerator of the fraction over 100. Therefore, 290% is equivalent to 290/100, which simplifies to 29/10. Choices A, B, and C are incorrect because they do not represent 290% as a fraction by placing the percentage value over 100.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access