which of the following is the length of the unknown leg of a right triangle that has one leg length of 9 feet and a hypotenuse of 19 feet round to the
Logo

Nursing Elites

ATI TEAS 7

Practice Math TEAS TEST

1. What is the length of the unknown leg of a right triangle that has one leg measuring 9 feet and a hypotenuse of 19 feet? (Round to the nearest tenth.)

Correct answer: A

Rationale: To find the length of the unknown leg (a) of a right triangle, use the Pythagorean theorem: a² + 9² = 19². Substitute the known values, solve for a: a² + 81 = 361. Subtract 81 from both sides to get a² = 280. Taking the square root of 280 gives a ≈ 16.7 feet. Therefore, the correct answer is 16.7 feet. Choice B (16.0 feet) is incorrect as it does not accurately round to the nearest tenth. Choice C (17.4 feet) and choice D (8.4 feet) are incorrect as they do not match the calculated value using the Pythagorean theorem.

2. Robert scores three new clients every eight months. After how many months has he secured 24 new clients?

Correct answer: A

Rationale: To find out the number of months needed to secure 24 new clients, you can set up a proportion: 3 clients / 8 months = 24 clients / x months. Cross multiplying gives you 3x = 24 * 8. Solving for x: 3x = 192, x = 192 / 3, x = 64. Therefore, Robert will secure 24 new clients after 64 months. Choice A is correct. Choice B (58), Choice C (52), and Choice D (66) are incorrect as they do not align with the correct calculation based on the given proportion.

3. The hypotenuse (side C) of a triangle is 13 inches long. Which of the following pairs of measurements could be correct for the lengths of the other two sides of the triangle? (Note: A² + B² = C²)

Correct answer: A

Rationale: The correct answer is A. Using the Pythagorean theorem (A² + B² = C²), we substitute the values: 5² + 12² = 13². This simplifies to 25 + 144 = 169, which is true. Therefore, 5 inches and 12 inches could be the lengths of the other two sides. Choices B, C, and D do not satisfy the Pythagorean theorem, making them incorrect options.

4. What is the value of b in this equation? 5b - 4 = 2b + 17

Correct answer: C

Rationale: To find the value of b in the equation 5b - 4 = 2b + 17, you need to first simplify the equation. By subtracting 2b from both sides of the equation and adding 4 to both sides, you get 3b = 21. Then, dividing both sides of the equation by 3 gives you b = 7. Therefore, the value of b is 7, which corresponds to option C. Choice A (13) is incorrect as it does not match the correct calculation. Choice B (24) is incorrect as it is not the result of the correct algebraic manipulation. Choice D (21) is incorrect as it is not the value of b obtained after solving the equation step by step.

5. Arrange the following fractions from least to greatest: 2/3, 1/2, 5/8, 7/9.

Correct answer: C

Rationale: To compare the fractions, it is beneficial to convert them to decimals or find a common denominator. When converted to decimals: 1/2 = 0.50, 5/8 = 0.625, 2/3 ≈ 0.666, and 7/9 ≈ 0.778. Therefore, the correct order from least to greatest is 1/2, 5/8, 2/3, 7/9. Choice A is incorrect because it places 7/9 first, which is the greatest fraction. Choice B is incorrect as it incorrectly lists the fractions. Choice D is incorrect as it starts with 7/9, which is the largest fraction instead of the smallest.

Similar Questions

Evaluate the expression -3 x 5.
A dry cleaner charges $3 per shirt, $6 per pair of pants, and an extra $5 per item for mending. Annie drops off 5 shirts and 4 pairs of pants, 2 of which need mending. Assuming the cleaner charges an 8% sales tax, what will be the amount of Annie’s total bill?
Round to the nearest tenth: 8.067.
Alan currently weighs 200 pounds, but he wants to lose weight to get down to 175 pounds. What is the difference in kilograms? (1 pound is approximately equal to 0.45 kilograms.)
Express 3 5/7 as an improper fraction.

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$49/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses