ATI TEAS 7
TEAS Test Math Prep
1. Kimberley earns $10 an hour babysitting, and after 10 p.m., she earns $12 an hour, with the amount paid being rounded to the nearest hour accordingly. On her last job, she worked from 5:30 p.m. to 11 p.m. In total, how much did Kimberley earn on her last job?
- A. $45
- B. $57
- C. $62
- D. $42
Correct answer: C
Rationale: Kimberley worked from 5:30 p.m. to 11 p.m., which is a total of 5.5 hours before 10 p.m. (from 5:30 p.m. to 10 p.m.) and 1 hour after 10 p.m. The earnings she made before 10 p.m. at $10 an hour was 5.5 hours * $10 = $55. Her earnings after 10 p.m. for the rounded hour were 1 hour * $12 = $12. Therefore, her total earnings for the last job were $55 + $12 = $67. Since the amount is rounded to the nearest hour, the closest rounded amount is $62. Therefore, Kimberley earned $62 on her last job. Choice A is incorrect as it does not consider the additional earnings after 10 p.m. Choices B and D are incorrect as they do not factor in the hourly rates and the total hours worked accurately.
2. Five of six numbers have a sum of 25. The average of all six numbers is 6. What is the sixth number?
- A. 8
- B. 10
- C. 11
- D. 12
Correct answer: C
Rationale: To find the sum of all six numbers, we multiply the average (6) by the total numbers (6), which equals 36. Since the sum of five numbers is 25, the sixth number can be found by subtracting the sum of five numbers from the total sum: 36 - 25 = 11. Therefore, the sixth number is 11. Choice A, 8, is incorrect because adding 8 to the sum of five numbers (25) would result in a total greater than the correct sum of all six numbers (36). Choice B, 10, is incorrect because adding 10 to the sum of five numbers (25) would also result in a total greater than the correct sum of all six numbers (36). Choice D, 12, is incorrect because adding 12 to the sum of five numbers (25) would exceed the correct sum of all six numbers (36).
3. A quantity increases from 40 to 60. Express this increase as a percentage.
- A. 26%
- B. 50%
- C. 35%
- D. 12%
Correct answer: B
Rationale: To calculate the percentage increase, use the formula: Percentage Increase = ((New Value - Original Value) / Original Value) x 100 Substitute the values: ((60 - 40) / 40) x 100 = (20 / 40) x 100 = 0.5 x 100 = 50% Therefore, the correct answer is 50%. Choice A (26%) is incorrect as the percentage increase is not 26%. Choice C (35%) is incorrect as the percentage increase is not 35%. Choice D (12%) is incorrect as the percentage increase is not 12%.
4. A patient requires a 20% decrease in medication dosage. Their current dosage is 400 mg. What will their dosage be after the decrease?
- A. 60 mg
- B. 80 mg
- C. 120 mg
- D. 320 mg
Correct answer: B
Rationale: To calculate a 20% decrease of 400 mg, you multiply 400 mg by 0.20 to get 80 mg. Subtracting 80 mg from the current dosage of 400 mg results in a new dosage of 320 mg. Choice A is incorrect because it miscalculates the decrease. Choice C is incorrect as it represents a 20% increase instead of a decrease. Choice D is incorrect as it represents the initial dosage, not the reduced dosage.
5. Mandy can buy 4 containers of yogurt and 3 boxes of crackers for $9.55. She can buy 2 containers of yogurt and 2 boxes of crackers for $5.90. How much does one box of crackers cost?
- A. $1.75
- B. $2.00
- C. $2.25
- D. $2.50
Correct answer: C
Rationale: To solve this problem, we can set up a system of equations. Let the cost of one container of yogurt be y and the cost of one box of crackers be c. From the first scenario, we have 4y + 3c = 9.55. From the second scenario, we have 2y + 2c = 5.90. Solving these equations simultaneously, we find that c = $2.25. Therefore, one box of crackers costs $2.25. Choice A, $1.75, is incorrect because it does not satisfy the given conditions in the system of equations. Choice B, $2.00, is incorrect as it does not match the calculated solution. Choice D, $2.50, is incorrect as it does not align with the calculated value for one box of crackers.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access