ATI TEAS 7
TEAS Test Math Prep
1. Kimberley earns $10 an hour babysitting, and after 10 p.m., she earns $12 an hour, with the amount paid being rounded to the nearest hour accordingly. On her last job, she worked from 5:30 p.m. to 11 p.m. In total, how much did Kimberley earn on her last job?
- A. $45
- B. $57
- C. $62
- D. $42
Correct answer: C
Rationale: Kimberley worked from 5:30 p.m. to 11 p.m., which is a total of 5.5 hours before 10 p.m. (from 5:30 p.m. to 10 p.m.) and 1 hour after 10 p.m. The earnings she made before 10 p.m. at $10 an hour was 5.5 hours * $10 = $55. Her earnings after 10 p.m. for the rounded hour were 1 hour * $12 = $12. Therefore, her total earnings for the last job were $55 + $12 = $67. Since the amount is rounded to the nearest hour, the closest rounded amount is $62. Therefore, Kimberley earned $62 on her last job. Choice A is incorrect as it does not consider the additional earnings after 10 p.m. Choices B and D are incorrect as they do not factor in the hourly rates and the total hours worked accurately.
2. Adrian measures the circumference of a circular picture frame with a radius of 3 inches. Which of the following is the best estimate for the circumference of the frame?
- A. 12 inches
- B. 16 inches
- C. 18 inches
- D. 24 inches
Correct answer: C
Rationale: To calculate the circumference of a circle, use the formula 2πr, where r is the radius. In this case, with a radius of 3 inches, the estimated circumference would be 2 x π x 3 = 6π ≈ 18.85 inches. Therefore, the best estimate for the circumference of the frame is 18 inches (Choice C). Choice A (12 inches) is too small as it corresponds to the diameter rather than the circumference. Choice B (16 inches) and Choice D (24 inches) are also incorrect as they do not reflect the accurate calculation based on the given radius.
3. Which of the following best describes the relationship in this set of data?
- A. High positive correlation
- B. Low positive correlation
- C. Low negative correlation
- D. No correlation
Correct answer: B
Rationale: The correct answer is 'B: Low positive correlation.' In a low positive correlation, the variables tend to increase together, but the relationship is not strong. This description fits the data set provided. Choice A, 'High positive correlation,' is incorrect because the correlation is not strong. Choice C, 'Low negative correlation,' is incorrect as the variables are not decreasing together. Choice D, 'No correlation,' is incorrect because there is a relationship between the variables, albeit weak.
4. Simplify the expression. Which of the following is correct? (52(3) + 3(-2)^2 / 4 + 3^2 - 2(5 - 8))
- A. 9/8
- B. 87/19
- C. 9
- D. 21/2
Correct answer: B
Rationale: To simplify the expression, apply the order of operations (PEMDAS). Begin by squaring -2 to get 4. Then perform the multiplication and subtraction within parentheses: 52(3) + 3(4)/4 + 9 - 2(5 - 8) = 156 + 12/4 + 9 - 2(3) = 156 + 3 + 9 - 6 = 168 + 3 - 6 = 171 - 6 = 165. Therefore, the correct simplified expression is 165, which is equivalent to 87/19. Choices A, C, and D are incorrect because they do not represent the accurate simplification of the given expression.
5. What defines a proper fraction versus an improper fraction?
- A. Proper: numerator < denominator; Improper: numerator > denominator
- B. Proper: numerator > denominator; Improper: numerator < denominator
- C. Proper: numerator = denominator; Improper: numerator < denominator
- D. Proper: numerator < denominator; Improper: numerator = denominator
Correct answer: A
Rationale: A proper fraction is characterized by having a numerator smaller than the denominator, while an improper fraction has a numerator larger than the denominator. Therefore, choice A is correct. Choice B is incorrect because it states the opposite relationship between the numerator and denominator for proper and improper fractions. Choice C is incorrect as it describes a fraction where the numerator is equal to the denominator, which is a different concept. Choice D is incorrect as it associates a numerator being smaller than the denominator with an improper fraction, which is inaccurate.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access