can a rational number be a fraction or decimal or must it be a whole number
Logo

Nursing Elites

ATI TEAS 7

Math Practice TEAS Test

1. Can a rational number be a fraction or decimal, or must it be a whole number?

Correct answer: C

Rationale: The correct answer is C. A rational number can be a whole number, fraction, or decimal. A rational number is any number that can be expressed as a ratio of two integers (where the denominator is not zero), which includes whole numbers, fractions, and decimals. Choice A is incorrect because rational numbers are not limited to being whole numbers. Choice B is incorrect because a rational number can be a fraction, decimal, or whole number. Choice D is incorrect because rational numbers can definitely be decimals, as long as the decimal representation is either terminating or repeating.

2. The first midwife uses 2/5 of her monthly contribution to pay for rent and utilities. She saves half of the remainder for incidental expenditures, and uses the rest of the money to purchase medical supplies. How much money does she spend on medical supplies each month?

Correct answer: A

Rationale: The first midwife contributes $2000. She spends $800 on rent and utilities. After paying for rent and utilities, $1200 remains. Half of this amount, which is $600, is saved for incidental expenditures. Therefore, the first midwife spends the remaining $600 on purchasing medical supplies each month. Choice A, $600, is the correct answer. Choices B, C, and D are incorrect as they do not accurately reflect the amount spent on medical supplies as calculated in the given scenario.

3. A patient requires a 30% decrease in their medication dosage. Their current dosage is 340 mg. What will their dosage be after the decrease?

Correct answer: B

Rationale: To calculate a 30% decrease of 340 mg, multiply 340 by 0.30 to get 102. Subtracting 102 from 340 gives a new dosage of 238 mg. Choice A (70 mg) is incorrect as it represents a 80% decrease, not 30%. Choice C (270 mg) is incorrect as it does not reflect a decrease but rather the original dosage. Choice D (340 mg) is incorrect as it is the original dosage and not reduced by 30%.

4. In Jim's school, there are 3 girls for every 2 boys. There are 650 students in total. Using this information, how many students are girls?

Correct answer: A

Rationale: To find the number of girls in Jim's school, we first establish the ratio of girls to boys as 3:2. This ratio implies that out of every 5 students (3 girls + 2 boys), 3 are girls and 2 are boys. Since there are a total of 650 students, we can divide them into 5 equal parts based on the ratio. Each part represents 650 divided by 5, which is 130. Therefore, there are 3 parts of girls in the school, totaling 3 multiplied by 130, which equals 390. Hence, there are 390 girls in Jim's school. Choice A, 260, is incorrect as it does not consider the correct ratio and calculation. Choice B, 130, is incorrect as it only represents one part of the total students, not the number of girls. Choice C, 65, is incorrect as it ignores the total number of students and the ratio provided.

5. Gordon purchased a television when his local electronics store had a sale. The television was offered at 30% off its original price of $472. What was the sale price Gordon paid?

Correct answer: D

Rationale: To find the sale price after a 30% discount, you need to subtract 30% of the original price from the original price. 30% of $472 is $141.60. Subtracting this discount from the original price gives $472 - $141.60 = $330.40, which is the sale price Gordon paid. Choice A, $141.60, is incorrect as it represents only the discount amount, not the final sale price. Choices B and C are also incorrect as they do not account for the correct calculations of the discount and final sale price.

Similar Questions

Given the double bar graph shown below, which of the following statements is true?
How many centimeters in an inch? How many inches in a centimeter?
How much hydrochloric acid (HCl) is necessary to make 2.5 liters of a 5:1 solution of water (in liters) to HCl (in grams)?
Which unit of measurement is larger, inches or centimeters?
Simplify the following expression: 5/9 × 15/36

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$49/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses