ATI TEAS 7
TEAS Exam Math Practice
1. Which of the following is the correct solution to the equation 3x + 4 = 19?
- A. x = 3
- B. x = 4
- C. x = 5
- D. x = 6
Correct answer: C
Rationale: To solve the equation 3x + 4 = 19, first, subtract 4 from both sides to isolate the term with x, which gives 3x = 15. Then, divide both sides by 3 to solve for x, resulting in x = 5. Therefore, the correct answer is x = 5. Choice A, x = 3, is incorrect as it does not satisfy the equation. Choice B, x = 4, is also incorrect as it does not make the equation true. Choice D, x = 6, is incorrect as it does not align with the correct solution obtained through the proper algebraic steps.
2. Simplify the following expression: (2/7) ÷ (5/6)
- A. 2/5
- B. 35/15
- C. 5/21
- D. 12/35
Correct answer: D
Rationale: To divide fractions, you multiply the first fraction by the reciprocal of the second fraction. In this case, (2/7) ÷ (5/6) becomes (2/7) × (6/5) = 12/35. Therefore, the correct answer is 12/35. Choice A (2/5), choice B (35/15), and choice C (5/21) are incorrect because they do not correctly simplify the given expression.
3. In the winter of 2006, 6 inches of snow fell in Chicago, IL. The following winter, 3 inches of snowfall fell in Chicago. What was the percent decrease in snowfall in Chicago between those two winters?
- A. 69.40%
- B. 59.00%
- C. 41.00%
- D. 24.70%
Correct answer: C
Rationale: To calculate the percent decrease in snowfall between the two winters, use the formula: Percent Decrease = ((Initial Value - Final Value) / Initial Value) * 100. In this case, the initial value is 6 inches and the final value is 3 inches. Plug these values into the formula: ((6 - 3) / 6) * 100 = (3 / 6) * 100 = 0.5 * 100 = 50%. Therefore, the correct answer is 50%, which is not listed among the choices provided. Among the given choices, the closest percentage is 41.00%, which corresponds to choice C.
4. A patient requires a 30% decrease in the dosage of their medication. Their current dosage is 340 mg. What will their dosage be after the decrease?
- A. 70 mg
- B. 238 mg
- C. 270 mg
- D. 340 mg
Correct answer: B
Rationale: To calculate a 30% decrease in 340 mg, you multiply 340 by 0.3, which equals 102 mg. Subtracting this from the current dosage gives 340 - 102 = 238 mg. Therefore, the correct answer is 238 mg. Choice A (70 mg) is incorrect because it represents a 70% decrease, not 30%. Choice C (270 mg) is incorrect as it does not reflect the correct calculation for a 30% decrease. Choice D (340 mg) is the initial dosage and not the reduced dosage after a 30% decrease.
5. Apply the polynomial identity to rewrite (a + b)².
- A. a² + b²
- B. 2ab
- C. a² + 2ab + b²
- D. a² - 2ab + b²
Correct answer: C
Rationale: When you see something like (a + b)², it means you're multiplying (a + b) by itself: (a + b)² = (a + b) × (a + b) To expand this, we use the distributive property (which says you multiply each term in the first bracket by each term in the second bracket): Multiply the first term in the first bracket (a) by both terms in the second bracket: a × a = a² a × b = ab Multiply the second term in the first bracket (b) by both terms in the second bracket: b × a = ab b × b = b² Now, add up all the results from the multiplication: a² + ab + ab + b² Since ab + ab is the same as 2ab, we can simplify it to: a² + 2ab + b² So, (a + b)² = a² + 2ab + b². This is known as a basic polynomial identity, and it shows that when you square a binomial (a two-term expression like a + b), you get three terms: the square of the first term (a²), twice the product of the two terms (2ab), and the square of the second term (b²). Therefore, the correct answer is C (a² + 2ab + b²)
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access