twelve less than thrice a number which of the following translates the phrase above into a mathematical expression
Logo

Nursing Elites

ATI TEAS 7

Practice Math TEAS TEST

1. What is the mathematical expression for 'Twelve less than thrice a number'?

Correct answer: A

Rationale: The phrase 'thrice a number' translates to 3x, and 'twelve less than' means subtracting 12 from it. Therefore, the correct expression is 3x-12. Choice B, '12-3x', represents '12 less than a number thrice,' which is the opposite of the given phrase. Choice C, '3-12x', does not correctly interpret the phrase provided. Choice D, '12x-3', represents 'a number thrice less than twelve,' which is not the same as the original phrase.

2. What is the least common multiple? What is the least common factor?

Correct answer: A

Rationale: The least common multiple is the smallest number that both numbers multiply into, which means it is the smallest number that both numbers can be evenly divided by without leaving a remainder. The least common factor, on the other hand, is the smallest number that divides both numbers without leaving a remainder. Therefore, choice A is correct as it accurately defines the least common multiple and factor. Choices B, C, and D are incorrect because they provide inaccurate definitions or mix up the concepts of multiplication and division in relation to finding the least common multiple and factor.

3. A book has a width of 5 decimeters. What is the width of the book in centimeters?

Correct answer: B

Rationale: To convert decimeters to centimeters, you need to multiply by 10 since 1 decimeter is equal to 10 centimeters. Therefore, to find the width of the book in centimeters, multiply 5 decimeters by 10: 5 decimeters * 10 = 50 centimeters. This means the width of the book is 50 centimeters, making choice B, "25 centimeters," the correct answer. Choices A, C, and D are incorrect because they do not correctly convert decimeters to centimeters.

4. Complete the following equation: 5 + 3 × 4 - 6 / 2 = ?

Correct answer: B

Rationale: To solve this equation, follow the order of operations (PEMDAS/BODMAS): First, perform multiplication and division from left to right. 3 × 4 equals 12, and 6 / 2 equals 3. Then, carry out addition and subtraction from left to right. 5 + 12 - 3 equals 14, not 9. Therefore, the correct answer is 14, making choice B the correct answer. Choices A, C, and D can be eliminated as they do not match the correct result obtained by following the order of operations.

5. Which of the following describes a real-world situation that could be modeled by?

Correct answer: A

Rationale: In the given situation, Courtney charges a $12 fee plus $2 per hour to babysit, represented by the equation: 12 + 2h where h is the number of hours. Kendra charges a $10 fee plus $5 per hour, represented by the equation: 10 + 5h. To find the number of hours for which the two charges are equal, we set the two equations equal to each other: 12 + 2h = 10 + 5h. Solving for h gives h = 2. This means that the charges are equal after 2 hours of babysitting. Choice B is incorrect because the fee and hourly rates for Courtney and Kendra are reversed, leading to an incorrect equation. Choices C and D are incorrect as they do not accurately represent the given scenario of fees and hourly rates for babysitting by Courtney and Kendra.

Similar Questions

What is the difference between two equal numbers?
When rounding 2678 to the nearest thousandth, which place value would be used to decide whether to round up or round down?
Which of the following best describes the relationship in this set of data?
Which of the following is listed in order from least to greatest? (-2, -3/4, -0.45, 3%, 0.36)
A charter bus driver drove at an average speed of 65 mph for 305 miles. If he stops at a gas station for 15 minutes, then drives another 162 miles at an average speed of 80 mph, how long will it have been since he began the trip?

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses