ATI TEAS 7
Practice Math TEAS TEST
1. How do you find the least common multiple?
- A. List all multiples of the numbers, then find the smallest common one
- B. List all factors of the numbers, then find the largest common one
- C. Divide the largest number by the smallest
- D. Multiply the two numbers together
Correct answer: A
Rationale: The correct way to find the least common multiple is to list all the multiples of each number and then identify the smallest common multiple. Choice A is correct because it describes the correct process. Listing factors, as suggested in choice B, helps in finding the greatest common factor, not the least common multiple. Dividing the largest number by the smallest, as mentioned in choice C, does not help find the least common multiple. Multiplying the two numbers together, as stated in choice D, results in their least common multiple when the numbers have no common factors.
2. If 5y - 7 = 13, what is y?
- A. 4
- B. 5
- C. 6
- D. 7
Correct answer: A
Rationale: To solve the equation 5y - 7 = 13, start by adding 7 to both sides to isolate the term with y: 5y = 20. Then, divide by 5 to solve for y, which gives y = 4. Therefore, the correct answer is A. Choice B, C, and D are incorrect as they do not yield the correct solution when substituted into the equation. It's important to follow the proper steps in solving linear equations to arrive at the correct answer.
3. While at the local ice skating rink, Cora went around the rink 27 times in total. She slipped and fell 20 of the 27 times she skated around the rink. What approximate percentage of the times around the rink did Cora not slip and fall?
- A. 37%
- B. 74%
- C. 26%
- D. 15%
Correct answer: C
Rationale: To find the approximate percentage of the times Cora did not slip and fall, subtract the times she fell (20) from the total times around the rink (27), which gives 7. Then, divide the number of times she did not slip and fall (7) by the total times around the rink (27) and multiply by 100 to get the percentage. So, 7 divided by 27 equals 0.259, which rounds to approximately 26%. Therefore, the correct answer is 26%. Choice A (37%) is incorrect because it does not reflect the calculation based on the given information. Choice B (74%) is incorrect as it is not the result of the correct calculation. Choice D (15%) is incorrect as it does not match the calculated percentage based on the scenario provided.
4. University Q has an extremely competitive nursing program. Historically, 3/4 of the students in each incoming class major in nursing, but only 1/3 of those who major in nursing actually complete the program. If this year’s incoming class has 100 students, how many students will complete the nursing program?
- A. 75
- B. 20
- C. 25
- D. 5
Correct answer: C
Rationale: Out of 100 students, 3/4 major in nursing, which is 75 students (100 * 3/4 = 75). Among these 75 students, only 1/3 will complete the program. Therefore, 1/3 of 75 is 25. Hence, 25 students will complete the nursing program. Choice A (75) is incorrect because this represents the number of students majoring in nursing, not completing the program. Choices B (20) and D (5) are incorrect as they do not align with the calculation based on the given fractions and total number of students.
5. Prizes are to be awarded to the best pupils in each class of an elementary school. The number of students in each grade is shown in the table, and the school principal wants the number of prizes awarded in each grade to be proportional to the number of students. If there are twenty prizes, how many should go to fifth-grade students? Grade 1 2 3 4 5 Students 35 38 38 33 36
- A. 5
- B. 4
- C. 7
- D. 3
Correct answer: C
Rationale: To determine how many prizes should be awarded to 5th-grade students, we need to set up the proportion of the number of 5th-grade students to the total number of students in the school. The total number of students is 35 + 38 + 38 + 33 + 36 = 180 students. To find the proportion of 5th-grade students, it would be 36/180 = 0.2. Since there are 20 prizes to be awarded, multiplying 0.2 by 20 gives us 4, which means 4 prizes should go to the 5th-grade students. Therefore, the correct answer is 4. Choice A (5) is incorrect as it does not align with the proportional distribution. Choice B (4) is the correct answer, as calculated. Choice C (7) is incorrect as it exceeds the total number of prizes available. Choice D (3) is incorrect as it does not match the proportional distribution based on the number of students.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access