ATI TEAS 7
TEAS Practice Math Test
1. Solve for x: 2x - 7 = 3
- A. x = 4
- B. x = 3
- C. x = -2
- D. x = 5
Correct answer: D
Rationale: To solve the equation for x, follow these steps: 2x - 7 = 3. Add 7 to both sides to isolate 2x, resulting in 2x = 10. Then, divide by 2 on both sides to find x, which gives x = 5. Therefore, the correct answer is x = 5. Choices A, B, and C are incorrect because they do not accurately solve the equation.
2. Which statement best describes the rate of change?
- A. Every day, the snow melts 10 centimeters.
- B. Every day, the snow melts 5 centimeters.
- C. Every day, the snow increases by 10 centimeters.
- D. Every day, the snow increases by 5 centimeters.
Correct answer: B
Rationale: The rate of change refers to how one quantity changes concerning another quantity. In this scenario, the rate of change is the amount of snow melting per day, which is 5 centimeters. This is determined by the slope of the graph, indicating a decrease in snow depth. Choices C and D incorrectly describe an increase in snow depth, while choice A exaggerates the rate of snow melting compared to the actual value of 5 centimeters per day.
3. How much did he save from the original price?
- A. $170
- B. $212.50
- C. $105.75
- D. $200
Correct answer: B
Rationale: To calculate the amount saved from the original price, you need to subtract the discounted price from the original price. The formula is: Original price - Discounted price = Amount saved. In this case, the original price was $850, and the discounted price was $637.50. Therefore, $850 - $637.50 = $212.50. Hence, he saved $212.50 from the original price. Choice A ($170) is incorrect as it is not the correct amount saved. Choice C ($105.75) is incorrect as it does not match the calculated savings. Choice D ($200) is incorrect as it is not the accurate amount saved based on the given prices.
4. Jessica buys 10 cans of paint. Red paint costs $1 per can, and blue paint costs $2 per can. In total, she spends $16. How many red cans did she buy?
- A. 2
- B. 3
- C. 4
- D. 5
Correct answer: C
Rationale: Let r be the number of red cans and b be the number of blue cans. The total cans equation is r + b = 10. The total cost equation is r + 2b = 16. By solving these equations simultaneously, we find r = 4. Therefore, Jessica bought 4 red cans. Choice A, 2 red cans, is incorrect because it does not satisfy the total cans or total cost condition. Choices B and D are also incorrect as they do not fulfill both conditions simultaneously.
5. University X requires some of its nursing students to take an exam before being admitted into the nursing program. In this year's class, half of the nursing students were required to take the exam, and three-fifths of those who took the exam passed. If this year's class has 200 students, how many students passed the exam?
- A. 120
- B. 100
- C. 60
- D. 50
Correct answer: C
Rationale: If the incoming class has 200 students, then half of those students were required to take the exam. (200)(1/2) = 100. So 100 students took the exam, but only three-fifths of that 100 passed the exam. (100)(3/5) = 60. Therefore, 60 students passed the exam. The correct answer is 60. Choice A is incorrect as it miscalculates the number of students who passed the exam. Choice B is incorrect as it does not consider the passing rate of the exam. Choice D is incorrect as it is much lower than the correct answer.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$49/ 30 days
- 3,000 Questions with answers
- 30 days access