which of the following equations correctly models the relationship between x and y when y is three times x
Logo

Nursing Elites

ATI TEAS 7

TEAS Math Questions

1. Which of the following equations correctly models the relationship between x and y when y is three times x?

Correct answer: A

Rationale: The correct equation that models the relationship between x and y when y is three times x is y = 3x. This equation represents that y is equal to three times x. Choice B (x = 3y) incorrectly reverses the relationship, stating that x is equal to three times y. Choice C (y = x + 3) and Choice D (y = x / 3) do not correctly represent a relationship where y is three times x, making them incorrect choices.

2. Margery is planning a vacation, and her round-trip airfare will cost $572. Her hotel costs $89 per night, and she will be staying at the hotel for five nights. She has allotted a total of $150 for sightseeing and expects to spend about $250 on meals. She will receive a 10% discount on the hotel price after the first night. What is the total amount Margery expects to spend on her vacation?

Correct answer: C

Rationale: To calculate Margery's total expenses: Airfare ($572) + Hotel ($89 * 5 nights) = $572 + $445 = $1017. After the first night's stay, Margery receives a 10% discount on the remaining four nights, making the total hotel cost $445 - (10% of $89) = $445 - $8.90 = $436.10. Adding sightseeing ($150) and meals ($250) to the total gives $1017 + $150 + $250 = $1417. Margery's expected expenses are $1417, not $1381.40 as stated in the original rationale. Therefore, the correct answer is $1,417.60 (Option D).

3. A patient was taking 310 mg of an antidepressant daily. The doctor reduced the dosage by 1/5, and then reduced it again by 20 mg. What is the patient’s final dosage?

Correct answer: C

Rationale: To calculate the final dosage, first find 1/5 of 310 mg, which is 62 mg, and subtract it from the original dosage. This gives 310 mg - 62 mg = 248 mg. Then, subtract an additional 20 mg from the result to get the final dosage: 248 mg - 20 mg = 228 mg. Therefore, the patient's final dosage is 228 mg. Choice A (20 mg) is incorrect because it only considers the second reduction of 20 mg and misses the initial reduction by 1/5. Choice B (42 mg) is incorrect as it miscalculates the reduction amounts. Choice D (248 mg) is incorrect as it does not account for the second reduction of 20 mg.

4. How do you convert yards to feet, and feet to yards?

Correct answer: A

Rationale: To convert yards to feet, you need to know that 1 yard is equal to 3 feet. Therefore, to convert yards to feet, you multiply the number of yards by 3. To convert feet to yards, you divide the number of feet by 3. Choice A correctly states that you should multiply yards by 3 to get feet and divide feet by 3 to get yards. Choices B, C, and D provide incorrect conversion factors, leading to inaccurate results.

5. Which of the following best describes the data represented by this scatterplot?

Correct answer: A

Rationale: The correct answer is A. The scatterplot depicts a clear linear association with a positive correlation between the two variables. Choice B is incorrect as the correlation is positive, not negative. Choice C is incorrect because the scatterplot does not show a nonlinear association. Choice D is incorrect as there is a distinguishable association present in the data.

Similar Questions

Based on the information in the table showing healthcare spending per capita in a group of African nations, which country experienced the largest increase in dollars spent per capita from 2013 to 2015?
What is the equation that describes the relationship between x and y in the table below: x = 2, y = 6; x = 3, y = 9; x = 4, y = 12?
An athlete runs 5 miles in 25 minutes and then changes pace to run the next 3 miles in 15 minutes. Overall, what is the average time in minutes it takes the athlete to run 1 mile?
What is the result of adding 1/6 and 1/2, expressed in reduced form?
What is the percentage equivalent of 0.0016?

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$1/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses