express this increase as a percentage
Logo

Nursing Elites

ATI TEAS 7

TEAS Test Math Prep

1. A quantity increases from 40 to 60. Express this increase as a percentage.

Correct answer: B

Rationale: To calculate the percentage increase, use the formula: Percentage Increase = ((New Value - Original Value) / Original Value) x 100 Substitute the values: ((60 - 40) / 40) x 100 = (20 / 40) x 100 = 0.5 x 100 = 50% Therefore, the correct answer is 50%. Choice A (26%) is incorrect as the percentage increase is not 26%. Choice C (35%) is incorrect as the percentage increase is not 35%. Choice D (12%) is incorrect as the percentage increase is not 12%.

2. The length of a rectangle is 3 units greater than its width. Which expression correctly represents the perimeter of the rectangle?

Correct answer: A

Rationale: To find the perimeter of a rectangle, you add up all its sides. In this case, the length is 3 units greater than the width, so the length can be expressed as W + 3. The formula for the perimeter of a rectangle is 2W + 2(L), where L represents the length. Substituting W + 3 for L, the correct expression for the perimeter becomes 2W + 2(W + 3), which simplifies to 2W + 2W + 6 or 4W + 6. Choices B, C, and D do not correctly represent the formula for the perimeter of a rectangle. Choice B simply adds the width twice to 3, neglecting the length. Choice C multiplies the width by the sum of the width and 3, which is incorrect. Choice D combines the width and 3 times the width, which is not the correct formula for the perimeter of a rectangle.

3. Jessica buys 10 cans of paint. Red paint costs $1 per can, and blue paint costs $2 per can. In total, she spends $16. How many red cans did she buy?

Correct answer: C

Rationale: Let r be the number of red cans and b be the number of blue cans. The total cans equation is r + b = 10. The total cost equation is r + 2b = 16. By solving these equations simultaneously, we find r = 4. Therefore, Jessica bought 4 red cans. Choice A, 2 red cans, is incorrect because it does not satisfy the total cans or total cost condition. Choices B and D are also incorrect as they do not fulfill both conditions simultaneously.

4. A patient requires a 30% increase in the dosage of their medication. Their current dosage is 270 mg. What will their dosage be after the increase?

Correct answer: D

Rationale: To calculate a 30% increase from the current dosage of 270 mg, first find 30% of 270, which is 81 mg. Add this 81 mg increase to the original dosage of 270 mg to get the new dosage, which is 351 mg (270 mg + 81 mg = 351 mg). Therefore, the correct answer is 351 mg. Choice A (81 mg) is incorrect because this value represents only the calculated 30% increase, not the total dosage after the increase. Choice B (270 mg) is the original dosage and does not account for the 30% increase. Choice C (300 mg) is close to the correct answer but does not consider the precise 30% increase calculation, leading to an incorrect total dosage.

5. Which proportion yields a different number for the unknown compared to the others?

Correct answer: D

Rationale: To find the value of x in each proportion, cross multiply. For proportion A, x = 4; for B, x = 8; for C, x = 6; and for D, x = 10. Hence, proportion D yields a different value for x compared to the others. Choices A, B, and C all result in unique values for x, but these values are distinct from the value obtained in proportion D.

Similar Questions

Which statement best describes the rate of change?
Curtis measured the temperature of water in a flask in his science class. The temperature of the water was 35 °C. He carefully heated the flask so that the temperature of the water increased by about 2 °C every 3 minutes. Approximately how much had the temperature of the water increased after 20 minutes?
If a person spends 1/4 of their day sleeping, how many hours do they spend sleeping?
Which of the following is the greatest value?
What is the range in the number of flights the flight attendant made?

Access More Features

ATI TEAS Premium Plus
$150/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses